精英家教网 > 高中数学 > 题目详情

【题目】编号1~15的小球共15个,求总体号码的平均值,试验者从中抽3个小球,以它们的平均数估计总体平均数,以编号2为起点,用系统抽样法抽3个小球,则这3个球的编号平均数是_____.

【答案】7

【解析】由系统抽样的定义知抽取的三个编号为2,7,12,所以平均数为7.故填7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆(a>b>0)的左、右焦点为F1、F2,点A在椭圆上,且与x轴垂直.

(1)求椭圆的方程;

(2)过A作直线与椭圆交于另外一点B,求AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数,),

(1)若,且函数的值域为,求得解析式;

(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;

(3)设,且为偶函数,判断是否大于零,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是

A若直线平面,直线平面,则直线不一定平行于直线

B若平面不垂直于平面,则内一定不存在直线垂直于平面

C若平面平面,则内一定不存在直线平行于平面

D若平面平面,平面平面,则一定垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为0125万元和05万元(如图)

(1)分别写出两种产品的收益与投资的函数关系;

(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大利润,其最大收

益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.

(1)求圆C的普通方程和直线的直角坐标方程;

(2)点P是圆C上任一点,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以椭圆的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足.

1求椭圆及其“准圆”的方程;

2)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C的对边分别为a,b,C已知3cosB-C-1=6cosBcosC

1求cosA;

2若a=3,ABC的面积为2 ,求b,C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线(m+2)x-y-3=0与直线(3m-2)x-y+1=0平行,则实数m的值是( )
A.1
B.2
C.3
D.不存在

查看答案和解析>>

同步练习册答案