【题目】已知不等式组 表示的平面区域为D,则
(1)z=x2+y2的最小值为 .
(2)若函数y=|2x﹣1|+m的图象上存在区域D上的点,则实数m的取值范围是 .
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表达式为f(x)= ,则函数f(x)与函数g(x)= 的图象在区间[﹣3,3]上的交点个数为( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ ﹣1(x≠0),k∈R.
(1)当k=3时,试判断f(x)在(﹣∞,0)上的单调性,并用定义证明;
(2)若对任意x∈R,不等式f(2x)>0恒成立,求实数k的取值范围;
(3)当k∈R时,试讨论f(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,PB⊥AC,AD⊥CD,且AD=CD=2 ,PA=2,点M在线段PD上. (Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若二面角M﹣AC﹣D的大小为45°,试确定点M的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.
(Ⅰ)估计所抽取的数学成绩的众数;
(Ⅱ)用分层抽样的方法在成绩为[80,90)和[90,100]这两组中共抽取5个学生,并从这5个学生中任取2人进行点评,求分数在[90,100]恰有1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在斜三棱柱ABC﹣A1B1C1中BC⊥CC1 , AC=BC=2,A1在底面ABC上的射影恰为AC的中点D.
(1)证明:BC⊥平面ACC1A1
(2)若二面角A﹣A1B﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18﹣ ,B产品的利润y2与投资金额x的函数关系为y2= (注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)当x∈[0, ]时,求f(x)的值域;
(2)用五点法在图中作出y=f(x)在闭区间[﹣ , ]上的简图;
(3)说明f(x)的图象可由y=sinx的图象经过怎样的变化得到?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆 + =1上的一点,从原点O向圆R(x﹣x0)2+(y﹣y0)2=12作两条切线,分别交椭圆于P,Q两点.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,分别记为k1 , k2 , 求k1k2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com