【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆 + =1上的一点,从原点O向圆R(x﹣x0)2+(y﹣y0)2=12作两条切线,分别交椭圆于P,Q两点.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,分别记为k1 , k2 , 求k1k2的值.
【答案】
(1)解:圆R的半径r=2 ,
∵OP⊥OQ,∴|OR|= r=2 ,∴x02+y02=24,
又点R在椭圆C上,∴ ,
联立 ,解得 .
∴圆R的方程为 (x﹣2 )2+(y﹣2 )2=12
(2)解:直线OP方程为:k1x﹣y=0,直线OQ的方程为:k2x﹣y=0.
∵OP,OQ为圆R的切线,
∴ =2 , .
∴k1,k2为方程 的两根,
∴ ,
∵点R在椭圆C上,∴ ,即 ,
∴ .
【解析】(1)利用切线的性质可求出|OR|=2 ,又R在椭圆上.列方程组解出R点坐标;(2)根据R到OP,OQ的距离为2 得出k1 , k2为某个一元二次方程的解,根据距离公式得出这个一元二次方程,结合R为椭圆上的点得出k1k2的值.
科目:高中数学 来源: 题型:
【题目】已知不等式组 表示的平面区域为D,则
(1)z=x2+y2的最小值为 .
(2)若函数y=|2x﹣1|+m的图象上存在区域D上的点,则实数m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点. (Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N* .
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元. (Ⅰ)如果某学生只吃食物A,判断他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克?并求出最低需要花费的钱数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 =(3 sinx, cosx), =(cosx, cosx),f (x)= .
(1)求f(x)的单调递减区间;
(2)x∈[﹣ , ]时,g(x)=f(x)+m的最大值为 ,求g(x)的最小值及相应的x值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b(a,b∈R). (Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函数f(x)的值域;
(ii)若函数f(x)的值域为[0,1],求a,b的值;
(Ⅱ)当|x|≥2时,恒有f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求a2+b2的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com