精英家教网 > 高中数学 > 题目详情

【题目】某营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元. (Ⅰ)如果某学生只吃食物A,判断他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克?并求出最低需要花费的钱数.

【答案】解:(Ⅰ)如果学生只吃食物Axkg, 则
无解,
故不符合营养学家的建议;
(Ⅱ)由题意,设学生每天吃食物Axkg,食物Bykg;
则z=20x+15y;

作平面区域如下,

解得,x= ,y=
故z=20× +15× =22;
答:学生每天吃0.8千克食物A,0.4千克食物B,既能符合营养学家的建议又花费最少.
最低需要花费22元
【解析】(Ⅰ)如果学生只吃食物Axkg,从而得不等式组 ,是否有解即可;(Ⅱ)由题意,设学生每天吃食物Axkg,食物Bykg;从而得到目标函数z=20x+15y;线性约束条件 ,从而利用线性规划求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在斜三棱柱ABC﹣A1B1C1中BC⊥CC1 , AC=BC=2,A1在底面ABC上的射影恰为AC的中点D.
(1)证明:BC⊥平面ACC1A1
(2)若二面角A﹣A1B﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(﹣3,4).
(1)求 + 的夹角;
(2)若 满足 ⊥( + ),( + )∥ ,求 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知R(x0 , y0)是椭圆 + =1上的一点,从原点O向圆R(x﹣x02+(y﹣y02=12作两条切线,分别交椭圆于P,Q两点.
(1)若R点在第一象限,且直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,分别记为k1 , k2 , 求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 其中M∪P=R,则下列结论中一定正确的是(
A.函数f(x)一定存在最大值
B.函数f(x)一定存在最小值
C.函数f(x)一定不存在最大值
D.函数f(x)一定不存在最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a3=5,a10=﹣9. (Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.

查看答案和解析>>

同步练习册答案