精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 其中M∪P=R,则下列结论中一定正确的是(
A.函数f(x)一定存在最大值
B.函数f(x)一定存在最小值
C.函数f(x)一定不存在最大值
D.函数f(x)一定不存在最小值

【答案】C
【解析】解:由函数y=2x的值域为(0,+∞),

y=x2的值域为[0,+∞),

且M∪P=R,

若M=(0,+∞),P=(﹣∞,0],

则f(x)的最小值为0,故D错;

若M=(﹣∞,2),P=[2,+∞),

则f(x)无最小值为,故B错;

由M∪P=R,可得图象无限上升,

则f(x)无最大值.

故选:C.

【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元. (Ⅰ)如果某学生只吃食物A,判断他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克?并求出最低需要花费的钱数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若α,β∈(0, ),sin( )=﹣ ,cos( )= ,则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 =(3 sinx, cosx), =(cosx, cosx),f (x)=
(1)求f(x)的单调递减区间;
(2)x∈[﹣ ]时,g(x)=f(x)+m的最大值为 ,求g(x)的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记所有非零向量构成的集合为V,对于 ∈V, ,定义V( )=|x∈V|x =x |
(1)请你任意写出两个平面向量 ,并写出集合V( )中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V( )中元素的关系,并试着给出证明;
(3)若V( )=V( ),其中 ,求证:一定存在实数λ1 , λ2 , 且λ12=1,使得 1 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家规定个人稿费纳税方法为:不超过800元的不纳税,超过800且不超过4000元的按超过800元的部分14%纳税,超过4000元的按全部稿费的11%纳税,
(1)试根据上述规定建立某人所得稿费x元与纳税额y元的函数关系;
(2)某人出了一本书,获得20000元的个人稿费,则这个人需要纳税是多少元?
(3)某人发表一篇文章共纳税70元,则这个人的稿费是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的图象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,E为PA的中点,F为BC的中点,底面ABCD是菱形,对角线AC,BD交于点O.求证:

(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.

查看答案和解析>>

同步练习册答案