精英家教网 > 高中数学 > 题目详情

 [2012·广东卷] 某几何体的三视图如图1-1所示,它的体积为(  )

图1-1

A.72π  B.48π

C.30π  D.24π

C [解析] 根据三观图知该几何体是由半球与圆锥构成,球的半径R=3,圆锥半径R=3,高为4,所以V组合体V半球V圆锥×π×33π×32×4=30π,所以选择C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 [2012·广东卷] 如图1-5所示,在四棱锥PABCD中,AB⊥平面PADABCDPDADEPB的中点,FDC上的点且DFABPH为△PADAD边上的高.

(1)证明:PH⊥平面ABCD

(2)若PH=1,ADFC=1,求三棱锥EBCF的体积;

(3)证明:EF⊥平面PAB.

图1-5

查看答案和解析>>

科目:高中数学 来源: 题型:

 [2012·广东卷] 如图1-5所示,在四棱锥PABCD中,AB⊥平面PADABCDPDADEPB的中点,FDC上的点且DFABPH为△PADAD边上的高.

(1)证明:PH⊥平面ABCD

(2)若PH=1,ADFC=1,求三棱锥EBCF的体积;

(3)证明:EF⊥平面PAB.

图1-5

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2012年高考广东卷理科20)(本小题满分14分)

在平面直角坐标系xOy中,已知椭圆C1的离心率e=,且椭圆C上的点到Q(0,2)的距离的最大值为3.

(1)求椭圆C的方程;

(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案