精英家教网 > 高中数学 > 题目详情
2.已知sin$\frac{α}{2}$=$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,则角α终边所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由已知利用倍角公式可求sinα,cosα,分别确定角α终边所在的象限,即可得出结论

解答 解:∵sin$\frac{α}{2}$=$\frac{3}{5}$,cos$\frac{α}{2}$=-$\frac{4}{5}$,
∴sinα=2sin$\frac{α}{2}$cos$\frac{α}{2}$=2×$\frac{3}{5}$×(-$\frac{4}{5}$)=-$\frac{24}{25}$<0,可得α终边所在的象限是第三、四象限;
cosα=2cos2$\frac{α}{2}$-1=2×(-$\frac{4}{5}$)2-1=$\frac{7}{25}$>0,可得:α终边所在的象限是第一、四象限,
∴角α终边所在的象限是第四象限.
故选:D.

点评 本题考查任意角的三角函数的定义及倍角公式的应用,考查角α终边所在的象限的确定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知数列{an},若a1,a2+1,a3成等差数列,数列{an+1}为公比为2的等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=an•log2(an+1)(n∈N*),其前n项和为Tn,试求满足Tn+$\frac{{n}^{2}+n}{2}$>2015的最小正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$.
(1)若函数f(x)的曲线上一条切线经过点M(0,0),求该切线方程;
(2)求函数f(x)在区间[-3,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|y=$\frac{1}{\sqrt{-{x}^{2}+x+2}}$},B={y|y=x${\;}^{\frac{1}{3}}$,x∈R},C={x|mx<-1},
(1)求∁R(A∩B);
(2)是否存在实数m使得(A∩B)⊆C成立,若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系内,已知A(3,2)是圆C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x-y+1=0和x+y-7=0,若圆C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(-m,0),(m,0),则实数m的取值集合为[3,7].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sinα=$\frac{1}{2}$+cosα,且α∈(0,$\frac{π}{2}$),则sin2α=$\frac{3}{4}$,cos2α=-$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数表示相同函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$     g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{5}{{2}^{x}}$-log2x的零点在区间(n,n+1)(n∈N)内,则n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x,x≥1}\\{1-3x,x<1}\end{array}}\right.$,若f[f(x0)]=-2,则x0的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案