精英家教网 > 高中数学 > 题目详情
已知f(x)=
-cosπx      x>0
f(x+1)+1  x≤0
,则f(
4
3
)+f(-
3
4
)的值等于
3-
2
2
3-
2
2
分析:根据
4
3
,-
3
4
与分段点0进行比较,代入相应的解析式,然后根据特殊值的三角函数进行求值即可.
解答:解:∵
4
3
>0,当x>0时,f(x)=-cosπx
∴f(
4
3
)=-cos
4
3
π=
1
2

∵-
3
4
<0,当x≤0时,f(x)=f(x+1)+1
∴f(-
3
4
)=f(
1
4
)+1=1-cos
π
4
=1-
2
2

∴f(
4
3
)+f(-
3
4
)=
1
2
+1-
2
2
=
3-
2
2

故答案为:
3-
2
2
点评:本题主要考查了分段函数求值,以及三角函数求值,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

www.ks5u.co

已知函数

   (I)当a<0时,求函数的单调区间;

   (II)若函数f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

同步练习册答案