精英家教网 > 高中数学 > 题目详情
(1-x2)(x-
1x
)7
的展开式中,x3的系数是
56
56
(用数字作答).
分析:要求(1-x2)(x-
1
x
)
7
的展开式中的x3项,只要利用(x-
1
x
)
7
展开式的通项Tr+1=
C
r
7
x7-r(-
1
x
)
r
=(-1)rC7rx7-2r找出含x3,x的项,然后可求
解答:解:∵(x-
1
x
)
7
展开式的通项Tr+1=
C
r
7
x7-r(-
1
x
)
r
=(-1)rC7rx7-2r
令7-2r=3可得,r=2,T3=C72x3;令7-2r=1可得,r=3,T4=-C73x
(1-x2)(x-
1
x
)
7
的展开式中的x3项为:1×C72x3-x2(-C73x)=(C72+C73)x3=56
故答案为:56
点评:本题主要考查了二项展开式的通项的应用,解题的关键是要灵活利用通项,属于公式的简单综合
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、不等式x2-|x|-2<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x2
|x+1|+|x-2|
 
(填奇函数,偶函数,非奇非偶函数,奇函数又是偶函数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
1
2
(p-1)x2+qx(p,q
为常数)
(1)若f(x)在(x1,x2)上单调递减,在(-∞,x1)和(x2,+∞)上单调递增,且x2-x1>1,求证:p2>2(p+2q);
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数y=f(x)的图象在直线l:15x-y+c=0的下方,求c的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2
按从大到小排列正确的是z>x>y;
③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤-3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的实数a的取值范围是0<a<
1
2

⑥关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

其中正确的有
③⑤⑥
③⑤⑥
(请把所有满足题意的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题
(1)x∈(0,
π
2
)
时,函数y=sinx+
2
sinx
的最小值为2
2

(2)若f(x)是奇函数,则f(x-1)的图象关于A(1,0)对称;
(3)“数列{an}为等比数列”是“数列{anan+1}为等比数列的充分不必要条件;
(4)若函数f(x)=log3(-x2+2mx-m2+36)在区间[-3,2)上是减函数,则m≤-3;
其中正确命题的序号是
(2)(3)
(2)(3)

查看答案和解析>>

同步练习册答案