精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+
1
2
(p-1)x2+qx(p,q
为常数)
(1)若f(x)在(x1,x2)上单调递减,在(-∞,x1)和(x2,+∞)上单调递增,且x2-x1>1,求证:p2>2(p+2q);
(2)若f(x)在x=1和x=3处取得极值,且在x∈[-6,6]时,函数y=f(x)的图象在直线l:15x-y+c=0的下方,求c的取值范围?
分析:(1)先求出函数f(x)的导数,根据题意可知x1,x2是导函数所对应方程的两个根,将条件x2-x1>1转化成(x2-x12>1,然后利用根数系数的关系建立不等关系,化简即可证得结论;
(2)先根据f(x)在x=1和x=3处取得极值,求出f(x)的解析式,令F(x)=f(x)-(15x+c),求出F(x)的极值,
将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,使F(x)的最大值小于零即可求出c的取值范围.
解答:解:(1)∵f(x)=
1
3
x3+
1
2
(p-1)x2+qx
,∴f(x)=x2+(p-1)x+q
又x1,x2是函数f(x)的两个极值点,则x1,x2是x2+(p-1)x+q=0的两根,
∴x1+x2=1-p,x1x2=q(2分)
∴(x1-x22=(x1+x22-4x1x2=(1-p)2-4q,(4分)
∵x2-x1>1,∴(x2-x12>1,∴(1-p)2-4q>1
即p2-2p-4q>0,∴p2>2(p+2q)
(2)由题意,
f(1)=0
f(3)=0
p+q=0
3p+q=-6

p=-3
q=3
(7分)
f(x)=
1
3
x3-2x2+3x

令F(x)=f(x)-(15x+c)=
1
3
x2-2x2-12x-c
,∴F'(x)=x2-4x-12
令F′(x)=0,∴x2-4x-12=0∴x1=-2,x2=6
当x∈(-6,-2)时,F′(x)>0,F(x)在[-6,-2]上递增,
当x∈(-2,6)时,F′(x)<0,F(x)在[-2,6]上递减
F(x)max=F(-2)=
40
3
-c(10分)

令F(-2)<0,即
40
3
-c<0
,∴c>
40
3
(11分)
∴所求c的取值范围为(
40
3
,+∞)
(12分)
点评:本题主要考查了利用导数研究函数的极值,以及利用导数研究函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案