精英家教网 > 高中数学 > 题目详情
8.如图,面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD中随机投掷1000个点,落在矩形ABCD的非阴影部分中的点数为350个,试估计阴影部分的面积为(  )
A.1.4B.1.6C.2.6D.2.4

分析 根据若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为650个可估计落在阴影部分的概率,而落在阴影部分的概率等于阴影部分的面积与矩形的面积比,从而可求出所求.

解答 解:根据几何概率的计算公式可得,向距形内随机投掷1000个点,落在矩形ABCD的非阴影部分中的点数为350个,
则落在矩形ABCD的阴影部分中的点数为650个,
设阴影部分的面积为S,落在阴影部分为事件A,
∴落在阴影部分的概率P(A)=$\frac{650}{1000}$,解得S=2.6.
故选C.

点评 本题考查了几何概型,解答此题的关键在于明确测度比是面积比.对于几何概型常见的测度是长度之比,面积之比,体积之比,角度之比,要根据题意合理的判断和选择是哪一种测度进行求解.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知各项均为正数的数列{an},其前n项和为Sn,且Sn,an,$\frac{1}{2}$成等差数列,则数列{an}的通项公式为(  )
A.2n-4B.2n-3C.2n-2D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.曲线x2+y2=4与曲线${x^2}+\frac{y^2}{9}=1$的交点个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.等差数列{an}中,a3,a7是函数f(x)=x2-4x+3的两个零点,则{an}的前9项和等于(  )
A.-18B.9C.18D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{\begin{array}{l}x,x≥0\\-x{e^x},x<0\end{array}\right.$,方程f2(x)+tf(x)+1=0(t∈R)有四个不同的实数根,则实数t的取值范围为$(-∞,-e-\frac{1}{e})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的个数为(  )
①统计中用相关系数r来衡量两个变量之间的线性关系的强弱.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱.
②回归直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$一定通过样本点的中心$(\overline x,\overline y)$.
③为了了解某地区参加数学竞赛的1003名学生的成绩情况,准备从中抽取一个容量为50的样本,现采用系统抽样的方法,需要从总体中剔除3个个体,在整体抽样过程中,每个个体被剔除的概率和每个个体被抽到的概率分别是$\frac{3}{1003}$和$\frac{50}{1000}$.
④将一组数据中每个数都加上或者减去同一个常数后,方差恒不变.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动点E在抛物线y2=16x上,过点E作EF垂直于x轴,垂足为F,设$\overrightarrow{EF}=2\overrightarrow{EM}$.
(1)求动点M的轨迹C的方程;
(2)已知点B(1,-2),过点(3,2)的直线L交曲线C于P、Q两点,求证:直线BP与直线BQ的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在三棱锥S-ABC中,SA⊥平面ABC,AB=1,AC=SA=2,∠BAC=60°,则三棱锥S-ABC的外接球的表面积是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一动圆与两圆:x2+y2=1和x2+y2-6x+5=0都外切,则动圆圆心的轨迹为(  )
A.抛物线B.双曲线C.双曲线的一支D.椭圆

查看答案和解析>>

同步练习册答案