精英家教网 > 高中数学 > 题目详情
已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:
(A)对任意实数k与q,直线l和圆M相切;
(B)对任意实数k与q,直线l和圆M有公共点;
(C)对任意实数q,必存在实数k,使得直线l与和圆M相切
(D)对任意实数k,必存在实数q,使得直线l与和圆M相切
其中真命题的代号是
 
.(写出所有真命题的代号)
分析:根据圆的方程找出圆心坐标和圆的半径r,然后求出圆心到已知直线的距离d利用两角和的正弦函数公式化为一个角的正弦函数与半径r比较大小即可得到直线与圆的位置关系,得到正确答案即可.
解答:解:圆心坐标为(-cosq,sinq),圆的半径为1
圆心到直线的距离d=
|-kcosθ-sinθ|
1+k2
=
1+k2
|sin(θ+φ)|
1+k2

=|sin(θ+φ)|≤1(其中sinφ=-
k
1+k2
,cosφ=-
1
1+k2

所以直线l与圆M有公共点,且对于任意实数k,必存在实数q,使直线l与圆M相切,
故答案为:(B)(D)
点评:此题要求学生会利用圆心到直线的距离与半径比较大小来判断直线与圆的位置关系,灵活运用点到直线的距离公式及两角和的正弦函数公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

 (本题满分15分)17. (本小题满分15分)已知圆C:,圆C关于直线对称,圆心在第二象限,半径为W ww.k s5 u.co m

(Ⅰ)求圆C的方程;

(Ⅱ)已知不过原点的直线与圆C相切,且在x轴、y轴上的截距相等,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (本题满分15分)17. (本小题满分15分)已知圆C:,圆C关于直线对称,圆心在第二象限,半径为W ww.k s5 u.co m

(Ⅰ)求圆C的方程;

(Ⅱ)已知不过原点的直线与圆C相切,且在x轴、y轴上的截距相等,求直线的方程。

查看答案和解析>>

同步练习册答案