±¾ÌâÉèÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£¬×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Éè¾ØÕó M=
a0
0b
£¨ÆäÖÐa£¾0£¬b£¾0£©£®
£¨I£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨II£©ÈôÇúÏßC£ºx2+y2=1ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½ÇúÏßC¡¯£º
x2
4
+y2=1
£¬Çóa£¬bµÄÖµ£®
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ó×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx-y+4=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=
3
cos∂
y=sin∂
(∂Ϊ²ÎÊý)
£®
£¨I£©ÒÑÖªÔÚ¼«×ø±ê£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬µãPµÄ¼«×ø±êΪ£¨4£¬
¦Ð
2
£©£¬ÅжϵãPÓëÖ±ÏßlµÄλÖùØϵ£»
£¨II£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éè²»µÈʽ|2x-1|£¼1µÄ½â¼¯ÎªM£®
£¨I£©Ç󼯺ÏM£»
£¨II£©Èôa£¬b¡ÊM£¬ÊԱȽÏab+1Óëa+bµÄ´óС£®
£¨1£©£¨I£©¡ßM=
a0
0b

¡àM-1=
.
b
ab-0
0
ab-0
0
ab-0
a
ab-0
.

½«a=2£¬b=3´úÈë¼´µÃ£ºM-1=
.
3
6
0
6
0
6
2
6
.
=
.
1
2
0
0
1
3
.

£¨II£©Éè³öÇúÏßC£ºx2+y2=1ÈÎÒâÒ»µãΪ£¨x0£¬y0£©¾­¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µÄµãΪ£¨x£¬y£©£¬
¡ßM£¨x0£¬y0£©=£¨x£¬y£©
¡à
ax0=x
by0=y

½«Ö®´úÈë
x2
4
+y2=1
µÃ£º
a2
x02
4
+b2
y20
=1

¼´
a2
4
=1
b2=1

¡ßa£¾0£¬b£¾0
¡à
a=2
b=1

£¨2£©£¨I£©½â¡ßPµÄ¼«×ø±êΪ£¨4£¬
¦Ð
2
£©£¬
x=¦Ñcos¦È
y=¦Ñsin¦È

¡àPµÄÖ±½Ç×ø±êΪ£¨0£¬4£©
¡ßÖ±ÏßlµÄ·½³ÌΪx-y+4=0
¡à£¨0£¬4£©ÔÚÖ±ÏßlÉÏ
£¨II£©¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=
3
cos∂  ¢Ù
y=sin∂  ¢Ú
(∂Ϊ²ÎÊý)
£¬Ö±ÏßlµÄ·½³ÌΪx-y+4=0
ÉèÇúÏßCµÄµ½Ö±ÏßlµÄ¾àÀëΪd
Ôòd=
|
3
cos¦Á-sin¦Á+4|
12+12
=
|4+2sin(
¦Ð
3
-¦Á)|
2

¡ß2sin£¨
¦Ð
3
-¦Á
£©¡Ê[-2£¬2]
¡àdµÄ×îСֵΪ
2

£¨3£©£¨I£©¡ß|2x-1|£¼1
¡à-1£¼2x-1£¼1
¼´0£¼x£¼1
¼´MΪ{x|0£¼x£¼1}
£¨II¡ßa£¬b¡ÊM
¡àa-1£¼0£®b-1£¼0
¡à£¨b-1£©£¨a-1£©£¾0
¡à£¨ab+1£©-£¨a+b£©=a£¨b-1£©+£¨1-b£©=£¨b-1£©£¨a-1£©£¾0
¼´£¨ab+1£©£¾£¨a+b£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÉèÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£¬×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Éè¾ØÕó M=
a0
0b
£¨ÆäÖÐa£¾0£¬b£¾0£©£®
£¨¢ñ£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨¢ò£©ÈôÇúÏßC£ºx2+y2=1ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½ÇúÏßC¡ä£º
x2
4
+y2=1
£¬Çóa£¬bµÄÖµ£®
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ó×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx-y+4=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=
3
cos∂
y=sin∂
(∂Ϊ²ÎÊý)
£®
£¨¢ñ£©ÒÑÖªÔÚ¼«×ø±ê£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬µãPµÄ¼«×ø±êΪ£¨4£¬
¦Ð
2
£©£¬ÅжϵãPÓëÖ±ÏßlµÄλÖùØϵ£»
£¨¢ò£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éè²»µÈʽ|2x-1|£¼1µÄ½â¼¯ÎªM£®
£¨¢ñ£©Ç󼯺ÏM£»
£¨¢ò£©Èôa£¬b¡ÊM£¬ÊԱȽÏab+1Óëa+bµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾ÌâÉèÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
±ä»»TÊǽ«Æ½ÃæÉÏÿ¸öµãM£¨x£¬y£©µÄºá×ø±ê³Ë2£¬×Ý×ø±ê³Ë4£¬±äµ½µãM¡ä£¨2x£¬4y£©£®
£¨¢ñ£©Çó±ä»»TµÄ¾ØÕó£»
£¨¢ò£©Ô²C£ºx2+y2=1Ôڱ任TµÄ×÷ÓÃϱä³ÉÁËʲôͼÐΣ¿
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖª¼«µãÓëÔ­µãÖغϣ¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ®ÈôÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ£º5¦Ñ2-3¦Ñ2cos2¦È-8=0£¬Ö±Ïß?µÄ²ÎÊý·½³ÌΪ£º
x=1-
3
t
y=t
£¨tΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Ö±Ïß?ÉÏÓÐÒ»¶¨µãP£¨1£¬0£©£¬ÇúÏßC1Óë?½»ÓÚM£¬NÁ½µã£¬Çó|PM|£®|PN|µÄÖµ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªa£¬b£¬cΪʵÊý£¬ÇÒa+b+c+2-2m=0£¬a2+
1
4
b2+
1
9
c2
+m-1=0£®
£¨¢ñ£©ÇóÖ¤£ºa2+
1
4
b2+
1
9
c2¡Ý
(a+b+c)2
14
£»
£¨¢ò£©ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄ긣½¨Ê¡¸ßÈýµÚ°Ë´ÎÔ¿¼Àí¿ÆÊýѧÊÔ¾í ÌâÐÍ£º½â´ðÌâ

±¾ÌâÉèÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×ö´ð£¬Âú·Ö14·Ö

£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»

±ä»»Êǽ«Æ½ÃæÉÏÿ¸öµãµÄºá×ø±ê³Ë£¬×Ý×ø±ê³Ë£¬±äµ½µã.

£¨¢ñ£©Çó±ä»»µÄ¾ØÕó£»

£¨¢ò£©Ô²Ôڱ任µÄ×÷ÓÃϱä³ÉÁËʲôͼÐΣ¿

£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì

ÒÑÖª¼«µãÓëÔ­µãÖغϣ¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ®ÈôÇúÏߵļ«×ø±ê·½³ÌΪ£º£¬Ö±ÏߵIJÎÊý·½³ÌΪ£º£¨Îª²ÎÊý£©.

£¨¢ñ£©ÇóÇúÏßµÄÖ±½Ç×ø±ê·½³Ì£»

£¨¢ò£©Ö±ÏßÉÏÓÐÒ»¶¨µã£¬ÇúÏßÓë½»ÓÚM£¬NÁ½µã£¬ÇóµÄÖµ£®

£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²

 ÒÑ֪ΪʵÊý£¬ÇÒ

£¨¢ñ£©ÇóÖ¤£º

£¨¢ò£©ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêÆÕͨ¸ßÖÐÕÐÉú¿¼ÊÔ¸£½¨Ê¡¸ß¿¼Àí¿ÆÊýѧ ÌâÐÍ£º½â´ðÌâ

±¾ÌâÉèÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×ö´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£¬×ö´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖС£

£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»

Éè¾ØÕó £¨ÆäÖÐa£¾0£¬b£¾0£©.

£¨I£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»

£¨II£©ÈôÇúÏßC£ºx2+y2=1ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½ÇúÏßC¡¯£º£¬Çóa£¬bµÄÖµ.

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Ä긣½¨Ê¡¸ß¿¼ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

±¾ÌâÉèÓУ¨1£©¡¢£¨2£©¡¢£¨3£©Èý¸öÑ¡¿¼Ì⣬ÿÌâ7·Ö£¬Ç뿼ÉúÈÎÑ¡2Ìâ×÷´ð£¬Âú·Ö14·Ö£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°Á½Ìâ¼Æ·Ö£¬×÷´ðʱ£¬ÏÈÓÃ2BǦ±ÊÔÚ´ðÌ⿨ÉÏ°ÑËùÑ¡ÌâÄ¿¶ÔÓ¦µÄÌâºÅÍ¿ºÚ£¬²¢½«ËùÑ¡ÌâºÅÌîÈëÀ¨ºÅÖУ®
£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Éè¾ØÕ󠣨ÆäÖÐa£¾0£¬b£¾0£©£®
£¨I£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨II£©ÈôÇúÏßC£ºx2+y2=1ÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½ÇúÏßC¡¯£º£¬Çóa£¬bµÄÖµ£®
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ó×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx-y+4=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ£®
£¨I£©ÒÑÖªÔÚ¼«×ø±ê£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬µãPµÄ¼«×ø±êΪ£¨4£¬£©£¬ÅжϵãPÓëÖ±ÏßlµÄλÖùØϵ£»
£¨II£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éè²»µÈʽ|2x-1|£¼1µÄ½â¼¯ÎªM£®
£¨I£©Ç󼯺ÏM£»
£¨II£©Èôa£¬b¡ÊM£¬ÊԱȽÏab+1Óëa+bµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸