精英家教网 > 高中数学 > 题目详情
设函数,已知时f(x)取到最大值2.
(Ⅰ)求a的值;
(Ⅱ)设y=g(x)与y=f(x)的图象关于直线对称,求满足x∈(0,π)且f(x)-2g(x)=3的所有x的值.
【答案】分析:(1)先根据三角函数的二倍角公式和辅角公式将函数f(x)化简为y=Asin(wx+ρ)的形式,根据最大值为2可求出A的值,进而求出a的值.
(2)先根据对称性写出函数g(x)的解析式,然后代入到f(x)-2g(x)=3中,再由正弦函数的性质可确定x的值.
解答:解:(Ⅰ)∵
=,其中,


(Ⅱ)∵



点评:本题主要考查二倍角公式、辅角公式和三角函数的对称性问题.三角函数部分公式比较多,一定要强化记忆,做题时才能做到游刃有余.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一次函数f(x)=ax-2,(a≠0).
(1)当a=3时,解不等式|f(x)|<4;
(2)设函数g(x)=f(sin2x)(-
π
6
≤x≤
π
3
)的最大值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宁德模拟)已知曲线f(x)=ax+blnx-1在点(1,f(1))处的切线为直线y=0.
(1)求实数a,b的值;
(2)设函数g(x)=
x2
2
-mx+mf(x)
,其中m为常数.
(i)求g(x)的单调递增区间;
(ii)求证:当1<m<3,x∈(1,e)(其中e=2.71828…)时,总有-
3
2
(1+ln3)<g(x)<
e2
2
-2
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.

查看答案和解析>>

同步练习册答案