精英家教网 > 高中数学 > 题目详情
4.已知扇形的圆心角为2弧度,面积为9cm2,则该扇形的弧长为6cm.

分析 利用扇形的面积求出扇形的半径,然后由弧长公式求出弧长的值.

解答 解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,扇形的面积为S,
则:r2=$\frac{2S}{α}$=$\frac{2×9}{2}$=9.解得r=3
∴扇形的弧长为l=rα=3×2=6l=rα=3×2=6cm.
故答案为:6.

点评 本题考查扇形面积、扇形的弧长公式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中偶数有312个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的导数.
(1)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^4}$+6
(2)f(x)=(5x-4)cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点A(-1,-1)和向量$\overrightarrow a$=(2,3),若$\overrightarrow{AB}$=3$\overrightarrow a$,则点B的坐标是(5,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若复数z=i(2-z),则z=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.首项为-4的等差数列{an}从第10项起为正数,则公差d的取值范围为(  )
A.$({\frac{4}{9},+∞})$B.$({\frac{4}{9},\frac{1}{2}})$C.$({\frac{4}{9},\frac{1}{2}}]$D.$({-∞,\frac{4}{9}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设an是($\sqrt{x}$+3)n+1(n∈N*)的展开式中含x项的系数,数列{$\frac{{3}^{n}}{{a}_{n}}$}的前n项和为Sn,则Sn=6-$\frac{6}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点An(n,an)(n∈N*)都在函数y=ax(a>0,a≠1)的图象上,则a4+a6与2a5的大小关系是(  )
A.a4+a6>2a5B.a4+a6<2a5
C.a4+a6=2a5D.a4+a6与2a5的大小与a有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=$\sqrt{3}$cos(2x+α)-sin(2x+α)的图象关于直线x=0对称,则α=(  )
A.α=kπ-$\frac{π}{3}$(k∈Z)B.α=kπ-$\frac{π}{6}$(k∈Z)C.α=kπ+$\frac{π}{3}$(k∈Z)D.α=kπ+$\frac{π}{6}$(k∈Z)

查看答案和解析>>

同步练习册答案