数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
求证:方程x=asinx+b(a>0,b>0)至少有一个正根,且它不大于a+b.
证明略
设f(x)=asinx+b-x,
则f(0)=b>0,f(a+b)=a·sin(a+b)+b-(a+b)=a[sin(a+b)-1]≤0,
又f(x)在(0,a+b]内是连续函数,所以存在一个x0∈(0,a+b],使f(x0)=0,即x0是方程f(x)=0的根,也就是方程x=a·sinx+b的根。
因此,方程x=asinx+b至少存在一个正根,且它不大于a+b。
科目:高中数学 来源: 题型:
科目:高中数学 来源: 题型:解答题
科目:高中数学 来源:2011年高三数学复习(第11章 导数及其应用):11.1 导数应用的题型与方法(解析版) 题型:解答题
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区