£¨20£©Éèf(x)ÊǶ¨ÒåÔÚ[0, 1]Éϵĺ¯Êý£¬Èô´æÔÚx*¡Ê(0£¬1)£¬Ê¹µÃf(x)ÔÚ[0, x*]Éϵ¥µ÷µÝÔö£¬ÔÚ[x*£¬1]Éϵ¥µ÷µÝ¼õ£¬Ôò³Æf(x)Ϊ[0, 1]Éϵĵ¥·åº¯Êý£¬x*Ϊ·åµã£¬°üº¬·åµãµÄÇø¼äΪº¬·åÇø¼ä£®

    ¶ÔÈÎÒâµÄ[0£¬1]Éϵĵ¥·åº¯Êýf(x)£¬ÏÂÃæÑо¿Ëõ¶ÌÆ京·åÇø¼ä³¤¶ÈµÄ·½·¨£®

£¨I£©Ö¤Ã÷£º¶ÔÈÎÒâµÄx1£¬x2¡Ê(0£¬1)£¬x1£¼x2£¬Èôf(x1)¡Ýf(x2)£¬Ôò(0£¬x2)Ϊº¬·åÇø¼ä£»Èôf(x1)¡Üf(x2)£¬Ôò(x1£¬1)Ϊº¬·åÇø¼ä£»

£¨II£©¶Ô¸ø¶¨µÄr£¨0£¼r£¼0.5£©£¬Ö¤Ã÷£º´æÔÚx1£¬x2¡Ê(0£¬1)£¬Âú×ãx2£­x1¡Ý2r£¬Ê¹µÃÓÉ£¨I£©ËùÈ·¶¨µÄº¬·åÇø¼äµÄ³¤¶È²»´óÓÚ 0.5£«r£»

£¨III£©Ñ¡È¡x1£¬x2¡Ê(0, 1)£¬x1£¼x2£¬ÓÉ£¨I£©¿ÉÈ·¶¨º¬·åÇø¼äΪ(0£¬x2)»ò(x1£¬1)£¬ÔÚËùµÃµÄº¬·åÇø¼äÄÚÑ¡È¡x3£¬ÓÉx3Óëx1»òx3Óëx2ÀàËƵؿÉÈ·¶¨Ò»¸öÐµĺ¬·åÇø¼ä£®ÔÚµÚÒ»´ÎÈ·¶¨µÄº¬·åÇø¼äΪ(0£¬x2)µÄÇé¿öÏ£¬ÊÔÈ·¶¨x1£¬x2£¬x3µÄÖµ£¬Âú×ãÁ½Á½Ö®²îµÄ¾ø¶ÔÖµ²»Ð¡ÓÚ0.02£¬ÇÒʹµÃÐµĺ¬·åÇø¼äµÄ³¤¶ÈËõ¶Ìµ½0.34.

£¨Çø¼ä³¤¶ÈµÈÓÚÇø¼äµÄÓҶ˵ãÓë×ó¶ËµãÖ®²î£©

£¨20£©£¨I£©Ö¤Ã÷£ºÉèx*Ϊf(x) µÄ·åµã£¬ÔòÓɵ¥·åº¯Êý¶¨Òå¿ÉÖª£¬f(x)ÔÚ[0, x*]Éϵ¥µ÷µÝÔö£¬ÔÚ[x*, 1]Éϵ¥µ÷µÝ¼õ£®

    µ±f(x1)¡Ýf(x2)ʱ£¬¼ÙÉèx*(0, x2)£¬Ôòx1<x2¡Üx*£¬´Ó¶øf(x*)¡Ýf(x2)>f(x1)£¬

    ÕâÓëf(x1)¡Ýf(x2)ì¶Ü£¬ËùÒÔx*¡Ê(0, x2)£¬¼´(0, x2)ÊǺ¬·åÇø¼ä.

    µ±f(x1)¡Üf(x2)ʱ£¬¼ÙÉèx*( x1, 1)£¬Ôòx*¡Üx1<x2£¬´Ó¶øf(x*)¡Ýf(x1)>f(x2)£¬

    ÕâÓëf(x1)¡Üf(x2)ì¶Ü£¬ËùÒÔx*¡Ê(x1, 1)£¬¼´(x1, 1)ÊǺ¬·åÇø¼ä.

£¨II£©Ö¤Ã÷£ºÓÉ£¨I£©µÄ½áÂÛ¿ÉÖª£º

    µ±f(x1)¡Ýf(x2)ʱ£¬º¬·åÇø¼äµÄ³¤¶ÈΪl1£½x2£»

    µ±f(x1)¡Üf(x2)ʱ£¬º¬·åÇø¼äµÄ³¤¶ÈΪl2=1£­x1£»

    ¶ÔÓÚÉÏÊöÁ½ÖÖÇé¿ö£¬ÓÉÌâÒâµÃ

                          ¢Ù

    Óɢٵà 1£«x2£­x1¡Ü1+2r£¬¼´x2£­x1¡Ü2r.

ÓÖÒòΪx2£­x1¡Ý2r£¬ËùÒÔ

x2£­x1=2r,     ¢Ú

    ½«¢Ú´úÈë¢ÙµÃ

    x1¡Ü0.5£­r, x2¡Ý0.5£«r£¬               ¢Û

    Óɢٺ͢۽âµÃ x1£½0.5£­r£¬ x2£½0.5£«r£®

    ËùÒÔÕâʱº¬·åÇø¼äµÄ³¤¶Èl1£½l2£½0.5£«r£¬¼´´æÔÚx1£¬x2ʹµÃËùÈ·¶¨µÄº¬·åÇø¼äµÄ³¤¶È²»´óÓÚ0.5£«r£®

£¨III£©½â£º¶ÔÏÈÑ¡ÔñµÄx1£¬x2£¬x1<x2£¬ÓÉ£¨II£©¿ÉÖª

    x1£«x2£½1£¬                             ¢Ü

    ÔÚµÚÒ»´ÎÈ·¶¨µÄº¬·åÇø¼äΪ(0, x2)µÄÇé¿öÏ£¬x3µÄÈ¡ÖµÓ¦Âú×ã

    x3£«x1£½x2£¬                            ¢Ý

    ÓÉ¢ÜÓë¢Ý¿ÉµÃ,

    µ±x1>x3ʱ£¬º¬·åÇø¼äµÄ³¤¶ÈΪx1£®

    ÓÉÌõ¼þx1£­x3¡Ý0.02£¬µÃx1£­(1£­2x1)¡Ý0.02£¬´Ó¶øx1¡Ý0.34£®

    Òò´Ë£¬ÎªÁ˽«º¬·åÇø¼äµÄ³¤¶ÈËõ¶Ìµ½0.34£¬Ö»ÐèÈ¡x1£½0.34£¬x2£½0.66£¬x3=0.32£®


Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º013

Éèf(x)ÊǶ¨ÒåÔÚʵÊý¼¯RÉϵĺ¯Êý£¬ÇÒÂú×ãÏÂÁйØϵ£ºf(10£«x)£½f(10£­x)£¬f(20£­x)£½£­f(20£«x)£¬Ôòf(x)ÊÇ£¨   £©

A£®Å¼º¯ÊýÓÖÊÇÖÜÆÚº¯Êý

B£®Å¼º¯Êýµ«²»ÊÇÖÜÆÚº¯Êý

C£®Æ溯ÊýÓÖÊÇÖÜÆÚº¯Êý

D£®Æ溯Êýµ«²»ÊÇÖÜÆÚº¯Êý£®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÊýѧ½ÌÑÐÊÒ ÌâÐÍ£º013

Éèf(x)ÊǶ¨ÒåÔÚʵÊý¼¯RÉϵĺ¯Êý£¬ÇÒÂú×ãÏÂÁйØϵ£ºf(10£«x)£½f(10£­x)£¬f(20£­x)£½£­f(20£«x)£¬Ôòf(x)ÊÇ£¨   £©

A£®Å¼º¯ÊýÓÖÊÇÖÜÆÚº¯Êý

B£®Å¼º¯Êýµ«²»ÊÇÖÜÆÚº¯Êý

C£®Æ溯ÊýÓÖÊÇÖÜÆÚº¯Êý

D£®Æ溯Êýµ«²»ÊÇÖÜÆÚº¯Êý£®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÁÉÄþÊ¡2012½ì¸ß¶þÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧ£¨ÎÄ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªf(x)ÊǶ¨ÒåÔÚ(£­¡Þ£¬£«¡Þ)ÉϵÄżº¯Êý£¬ÇÒÔÚ(£­¡Þ£¬0]ÉÏÊÇÔöº¯Êý£¬Éèa£½f(log47)£¬b£½f(log3)£¬c£½f(0.20.6)£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇ          (¡¡¡¡)

A£®c<b<a        B£®b<c<a       C£®b<a<c     D£®a<b<c

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

(20)Éèf(x)=3ax2+2bx+c£¬Èôa+b+c=0£¬f(0)f(1)£¾0£¬ÇóÖ¤£º

    (¢ñ)·½³Ìf(x)=0ÓÐʵ¸ù£»

    (¢ò)-2£¼£¼-1£»

    (¢ó)Éèx1£¬x2ÊÇ·½³Ìf(x)=0µÄÁ½¸öʵ¸ù£¬Ôò¡Ü|x1-x2|£¼£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸