(湖南卷理2) “成立”是“成立”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
科目:高中数学 来源: 题型:
(05年湖南卷理)(14分)
自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不
要求证明)
(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的
最大允许值是多少?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年湖南卷理)将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上
往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第次全行的数都为1的是第 行;第61行中1的个数是 .
第1行 1 1
第2行 1 0 1
第3行 1 1 1 1
第4行 1 0 0 0 1
第5行 1 1 0 0 1 1
…… ………………………………
图1
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年湖南卷理)(12分)
如图2,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,,并连结,使得平面
平面,,且.连结,如图3.
图2
图3
(I)证明:平面平面;
(II)当,,时,求直线和平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷理)在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则
(1)球心到平面ABC的距离为 12 ;
(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷理)在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则
(1)球心到平面ABC的距离为 12 ;
(2)过A,B两点的大圆面为平面ABC所成二面角为(锐角)的正切值为 3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com