精英家教网 > 高中数学 > 题目详情
函数y=sin2x+sinxcosx的最小正周期T=(  )
A、2π
B、π
C、
π
2
D、
π
3
分析:本题考查的知识是三角函数的周期性及其求法,及二倍角公式,由二倍角公式及辅助角公式,我们易将函数y=sin2x+sinxcosx化简为正弦型函数的形式,然后根据正弦型函数求周期的方法易得答案.
解答:解:y=sin2x+sinxcosx=
1-cos2x
2
+
1
2
sin2x

=
1
2
(sin2x-cos2x)+
1
2
=
2
2
sin(2x-
π
4
)+
1
2

∴最小正周期T=π.
故选B
点评:函数y=Asin(ωx+φ)(A>0,ω>0)中,最大值或最小值由A确定,由周期由ω决定,即要求三角函数的周期与最值一般是要将其函数的解析式化为正弦型函数,再根据最大值为|A|,最小值为-|A|,周期T=
ω
进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在区间(0,
π
2
)
上的函数y=sin2x的图象与y=
1
2
cosx
图象的交点横坐标为α,则tanα的值为
15
15
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确命题的序号是
 

①函数y=sin(2x+
π
6
)
的图象可由函数y=sin2x的图象向左平移
π
6
单位得到;
②△ABC中,a,b,c分别是角A,B,C的对边,已知A=60°,a=7,则b+c不可能等于15;
③若函数f(x)的导数为f'(x),f(x0)为f(x)的极值的充要条件是f'(x0)=0;
④在同一坐标系中,函数y=sinx的图象和函数y=x的图象只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin(
2
3
x+
2
)是偶函数;
②函数y=2|x|的最小值是1;
③函数y=ln(x2+1)的值域是R;
④函数y=sin2x的图象向左平移
π
4
个单位,得到y=sin(2x+
π
4
)的图象
⑤函数f(x)=2x-x2只有两个零点;
其中正确命题的序号是
①②⑤
①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=sin2x的图象沿 x轴向左平移
π
6
个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)图象,对于函数y=f(x)有以下四个判断:
①该函数的解析式为y=2sin(2x+
π
6
);  
②该函数图象关于点(
π
3
,0
)对称; 
③该函数在[0,
π
6
]上是增函数;
④函数y=f(x)+a在[0,
π
2
]上的最小值为
3
,则a=2
3

其中,正确判断的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin2x的图象在点P(
π
6
1
4
)
处的切线的斜率是
3
2
3
2

查看答案和解析>>

同步练习册答案