精英家教网 > 高中数学 > 题目详情
给出下列命题:
①函数y=sin(
2
3
x+
2
)是偶函数;
②函数y=2|x|的最小值是1;
③函数y=ln(x2+1)的值域是R;
④函数y=sin2x的图象向左平移
π
4
个单位,得到y=sin(2x+
π
4
)的图象
⑤函数f(x)=2x-x2只有两个零点;
其中正确命题的序号是
①②⑤
①②⑤
分析:根据三角函数的诱导公式,结合余弦函数为偶函数得到①正确;根据绝对值非负的性质和指数函数的单调性,可得②正确;根据平方非负的性质和对数函数的单调性,可得③不正确;根据函数图象平移的公式,可得④不正确;根据指数函数y=2x与二次函数y=x2的图象,可得函数f(x)=2x-x2有3个零点,故⑤不正确.
解答:解:因为sin(
2
3
x+
2
)=-cos
2
3
x,
所以函数y=sin(
2
3
x+
2
)即y=-cos
2
3
x,是定义域上的偶函数,故①正确;
因为|x|≥0,可得y=2|x|≥20=1,故函数y=2|x|的最小值是1,得②正确;
因为x2+1≥1,可得ln(x2+1)≥0,得函数y=ln(x2+1)的值域是[0,+∞),不是R,故③不正确;
将函数y=sin2x的图象向左平移
π
4
个单位,
到y=sin2(x+
π
4
)=sin(2x+
π
2
)的图象,而不是y=sin(2x+
π
4
)的图象,故④不正确;
对于⑤,因为函数ff(x)=2x-x2的零点除了2和4,还有一个负数
所以函数f(x)=2x-x2有3个零点,故⑤不正确
因此,正确命题的序号为①②⑤
故答案为:①②⑤
点评:本题以命题真假的判断为载体,着重考查了余弦函数的奇偶性、指对数函数的图象与性质、函数的值域求法和函数图象平移公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=4cos(2x+
π
3
)
的一条对称轴是直线x=-
12

②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,
2
2
]

③若α,β均为第一象限角,且α>β,则sinα>sinβ.
其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(3a-1)x-2  x<1
logax         x≥1
,现给出下列命题:
①函数f(x)的图象可以是一条连续不断的曲线;
②能找到一个非零实数a,使得函数f (x)在R上是增函数;
③a>1时函数y=f (|x|) 有最小值-2.
其中正确的命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的“l高调函数”.现给出下列命题:
①函数f(x)=2x为R上的“1高调函数”;
②函数f(x)=sin2x为R上的“A高调函数”;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上“m高调函数”,那么实数m的取值范围是[2,+∞);
其中正确的命题是
①②③
①②③
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=sin|x|不是周期函数;        ②函数y=tanx在定义域内是增函数;
③函数y=|cos2x+
1
2
|
的周期是
π
2
;    ④函数y=sin(x+
2
)
是偶函数.
其中正确的命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(
2
3
x+
π
2
)
是奇函数;②函数y=sinx+cosx的最大值为
3
2

③函数y=tanx在第一象限内是增函数;
④函数y=sin(2x+
π
2
)
的图象关于直线x=
π
12
成轴对称图形.
其中正确的命题序号是

查看答案和解析>>

同步练习册答案