精英家教网 > 高中数学 > 题目详情
已知命题P:?x0∈[-1,1],满足x02+x0-3a≥0,q:y=(2a-1)x为减函数.若命题p∧q 为真命题,则实数a的取值范围
1
2
<a
2
3
1
2
<a
2
3
分析:通过分类讨论求出p为真命题的a的范围,再求出命题q为真命题的a的范围,“命题p∧q”为真命题,即命题q 命题p都是真命题,写出a的范围.
解答:解:∵?x0∈[-1,1],满足x02+x0-3a≥0
∴令g(x)=x2+x=(x+
1
2
2-
1
4

∵x0∈[-1,1],∵f(-1)=0,f(1)=2,
∴g(x)在[-1,1]上的最大值为2,
∴3a≤2,即a≤
2
3

故命题P:a≤
2
3

∵y=(2a-1)x为减函数,∴0<2a-1<1
1
2
<a<1

命题q:
1
2
<a<1

由于命题p∧q 为真命题,则
a≤
2
3
1
2
<a<1
,即为
1
2
<a≤
2
3

故答案为
1
2
<a≤
2
3
点评:本题是一道综合题,主要利用命题的真假关系,将复合命题的真假转化为简单命题的真假来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,使得x02+(a-1)x0+1<0,命题q:y=x2-ax在区间[1,+∞)没有极值,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充一模)已知命题p:?x0R+,log2x0=1,则?p是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,sinx0≥1,则有(  )
A、?p:;?x0∈R,sinx0<1B、?p:?x∈R,sinx<1C、?p:?x∈R,sinx≤1D、?p:?x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,ex-mx=0,q:?x∈R,x2+mx+1≥0,若p∨(?q)为假命题,则实数m的取值范围是(  )
A、(-∞,0)∪(2,+∞)B、[0,2]C、RD、∅

查看答案和解析>>

同步练习册答案