精英家教网 > 高中数学 > 题目详情
已知命题p:?x0∈R,使得x02+(a-1)x0+1<0,命题q:y=x2-ax在区间[1,+∞)没有极值,若p或q为真,p且q为假,求实数a的取值范围.
分析:先分别求出命题p,q为真的等价条件,然后利用复合命题p或q为真,p且q为假,确定实数a的取值范围.
解答:解:若p为真命题,则△=(a-1)2-4>0,解得a>3或a<-1,即p:a>3或a<-1.
若q为真命题,则
a
2
≤1
,解得a≤2,即q:a≤2.
又p或q为真,所以p,q至少有一个为真.
p且q为假,则p,q至少有一个为假,
所以p,q一真一假.
①若p真q假,则
a<-1或a>3
a>2
,解得a>3

②若q真p假,则
-1≤a≤3
a≤2
,解得-1≤a≤2

综上,a>3或-1≤a≤2.
故实数实数a的取值范是{x|a>3或-1≤a≤2}.
点评:本题考查了利用复合命题的真假求参数的问题,根据复合命题的真假关系,确定简单命题的真假是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:?x0∈[-1,1],满足x02+x0-3a≥0,q:y=(2a-1)x为减函数.若命题p∧q 为真命题,则实数a的取值范围
1
2
<a
2
3
1
2
<a
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充一模)已知命题p:?x0R+,log2x0=1,则?p是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,sinx0≥1,则有(  )
A、?p:;?x0∈R,sinx0<1B、?p:?x∈R,sinx<1C、?p:?x∈R,sinx≤1D、?p:?x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,ex-mx=0,q:?x∈R,x2+mx+1≥0,若p∨(?q)为假命题,则实数m的取值范围是(  )
A、(-∞,0)∪(2,+∞)B、[0,2]C、RD、∅

查看答案和解析>>

同步练习册答案