【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且a<b<c,C=2A.
(1)若c= a,求角A;
(2)是否存在△ABC恰好使a,b,c是三个连续的自然数?若存在,求△ABC的周长;若不存在,请说明理由.
【答案】
(1)解:∵c= a,
∴由正弦定理有sinC= sinA.
又C=2A,即sin2A= sinA,
于是2sinAcosA= sinA,
在△ABC中,sinA≠0,于是cosA= ,
∴A= .
(2)解:根据已知条件可设a=n,b=n+1,c=n+2,n∈N*.
由C=2A,得sinC=sin2A=2sinAcosA,
∴cosA= .
由余弦定理得 = ,代入a,b,c可得:
= ,
解得n=4,
∴a=4,b=5,c=6,从而△ABC的周长为15,
即存在满足条件的△ABC,其周长为15
【解析】(1)由正弦定理有sinC= sinA,又C=2A,利用倍角公式可求2sinAcosA= sinA,结合sinA≠0,可得cosA= ,即可得解A的值.(2)设a=n,b=n+1,c=n+2,n∈N*.由已知利用二倍角公式可求cosA= ,由余弦定理得 = ,解得n=4,求得a,b,c的值,从而可求△ABC的周长.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f′(x),且满足xf′(x)+2f(x)>0,则不等式 的解集为( )
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在直线,直线l的方程为ax+by=r2 , 那么( )
A.m∥l,且l与圆相交
B.m⊥l,且l与圆相切
C.m∥l,且l与圆相离
D.m⊥l,且l与圆相离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|x﹣t|(t∈R)
(1)t=2时,求不等式f(x)>2的解集;
(2)若对于任意的t∈[1,2],x∈[﹣1,3],f(x)≥a+x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,Q为AD的中点,M是棱PC的中点,PA=PD=PC,BC= AD=2,CD=4
(1)求证:直线PA∥平面QMB;
(2)若二面角P﹣AD﹣C为60°,求直线PB与平面QMB所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 为定义在(﹣∞,0)∪(0,+∞)上的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在区间(a+1,+∞)上的单调性,并用定义法证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin+cos , x∈R.
(1)求函数f(x)的最小正周期,并求函数f(x)在x∈[﹣2π,2π]上的单调递增区间;
(2)函数f(x)=sinx(x∈R)的图象经过怎样的平移和伸缩变换可以得到函数f(x)的图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com