精英家教网 > 高中数学 > 题目详情

在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π有零点的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax-b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.
解答:由题意知本题是一个几何概型,
∵a,b使得函数f(x)=x2+2ax-b2+π有零点,
∴△≥0
∴a2+b2≥π
试验发生时包含的所有事件是Ω={(a,b)|-π≤a≤π,-π≤b≤π}
∴S=(2π)2=4π2
而满足条件的事件是{(a,b)|a2+b2≥π},
∴s=4π22=3π2
由几何概型公式得到P=
故选B.
点评:高中必修中学习了几何概型和古典概型两种概率问题,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.再看是不是几何概型,它的结果要通过长度、面积或体积之比来得到.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+ax+b2,a,b为常数
(1)若a∈{0,1,2,3},b∈{-2,-1,0,1,2},求该函数图象与x轴有交点的概率;
(2)若a,b在区间[-2,2]内等可能取值,求f(x)=0有实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间[-1,1]内至少存在一个数c 使得f(c)>0,则实数p的取值范围是
(-3,1.5)
(-3,1.5)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x+1)=-f(x),当x∈(0,1]时,f(x)=x,若在区间[-1,1]内,g(x)=f(x)-mx-m恰有一个零点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(n)=logn+1(n+2),(n∈N*),定义:使f(1)×f(2)×f(3)×…×f(k)为整数的数k(k∈N*)叫作企盼数,则在区间[1,1000]内这样的企盼数共有(  )个.
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+(2a-1)x+1-2a
(1)判断命题:“对于任意的a∈R(R为实数集),方程f(x)=1必有实数根”的真假,并写出判断过程.
(2)若y=f(x)在区间[2,3]内有零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案