精英家教网 > 高中数学 > 题目详情
函数f(x)=x2-2ax+1在闭区间[-1,1]上的最小值记为g(a).
(1)求g(a)的解析式;
(2)求g(a)的最大值.
考点:二次函数在闭区间上的最值
专题:
分析:(1)根据函数f(x)的图象的对称轴x=a在所给区间[-1,1]的左侧、中间、右侧三种情况,分别求得f(a),综合可得结论.
(2)根据函数g(a)的解析式,画出函数g(a)的图象,数形结合求得函数g(a)取得最大值.
解答: 解:(1)函数f(x)可化为f(x)=(x-a)2+1-a2,其图象的对称轴x=a与所给区间[-1,1]呈现出如下图所示的三种位置关系.

①当a>1时,如图所示,g(a)=f(1)=2-2a;当-1≤a≤1时,g(a)=f(a)=1-a2,当a<-1时,g(a)=f(-1)=2+2a,
综上可得g(a)=
2-2a,a>1
1-a2,-1≤a≤1
2+2a,a<-1

(2)根据g(a)=
2-2a,a>1
1-a2,-1≤a≤1
2+2a,a<-1
,画出函数g(a)的图象,如图所示,故当a=0时,函数g(a)取得最大值为1.
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论、数形结合的数学思想,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,
|AF1|=3|BF1|,且|AB|=4,△ABF2的周长为16
(1)求|AF2|;
(2)若直线AB的斜率为1,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2-4x+6,g(x)=a2•3x+b2(a1,a2,b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1-10月份甲、乙两个工厂的利润的大小情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

在教育心理学中有时可用函数f(x)=
0.1+1.5ln
a
a-x
,(x≥6)
x-4.4
x-4
,(x>6)
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(x∈N*),正实数a与学科知识有关.
(1)当x≥7时,判断f(x)的单调性,并加以证明;
(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识5次时,掌握程度是70%,请确定相应的学科.(参考数据:e0.04=1.04,e0.4=1.49)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(1)求an及Sn
(2)设数列{
1
Sn
}的前n项和为Tn,求证:当n∈N+都有Tn
n
n+1
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2.
(1)求an与k;
(2)若数列{bn}满足b1=2,bn-bn-1=n•2 an(n≥2),求bn

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
cos20°
cos35°
1-sin20°

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的焦点为F1、F2,离心率为
2
2
,通径长(过焦点且垂直于长轴的直线与椭圆相交线段的长)为2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l与椭圆相交于M(x1,y1)、N(x2,y2)两点,△OMN面积为2
2
,试问x12+x22能否为定值?如果为定值,求出该值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+4x-4,x为何值时:
(1)f(x)=0?
(2)f(x)>0?
(3)f(x)<0?

查看答案和解析>>

同步练习册答案