精英家教网 > 高中数学 > 题目详情
18、已知y=f(x)是R上的偶函数,x≥0时,f(x)=x2-2x
(1)当x<0时,求f(x)的解析式.
(2)作出函数f(x)的图象,并指出其单调区间.
分析:(1)设x<0,则-x>0,再由x>0时,f(x)=x2-2x.求得f(-x),然后通过f(x)是R上的偶函数求得f(x).
(2)作出图来,由图象写出单调区间.
解答:解:(1)设x<0,则-x>0,
∵x>0时,f(x)=x2-2x.
∴f(-x)=(-x)2-2•(-x)=x2+2x
∵y=f(x)是R上的偶函数
∴f(x)=f(-x)=x2+2x

(2)单增区间(-1,0)和(1,+∞);
单减区间(-∞,-1)和(0,1).
点评:本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、已知y=f(x)是R上的偶函数,且f(x)在(-∞,0]上是增函数,若f(a)≥f(2),则a的取值范围是
[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

11、已知y=f(x)是R上的奇函数,且x<0时,f(x)=x+2x;则当x>0时,f(x)=
x-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的偶函数,当x≥0 时,f(x)=x(x+1),当x<0 时,f(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的可导函数,对于任意的正实数t,都有函数g(x)=f(x+t)-f(x)在其定义域内为减函数,则函数y=f(x)的图象可能为如图中(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是R上的增函数,且f(2m)<f(9-m),则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案