精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\frac{ax}{{{x^2}+b}}$.
(1)求f'(x);
(2)设f(x)的图象在x=1处与直线y=2相切,求函数f(x)的解析式.

分析 (1)利用导数法则求f'(x);
(2)由f(x)的图象在x=1处与直线y=2相切,得$\left\{\begin{array}{l}f'(1)=0\\ f(1)=2\end{array}\right.$,求出a,b,即可求函数f(x)的解析式.

解答 解:(1)$f'(x)=\frac{{ax'({x^2}+b)-ax({x^2}+b)'}}{{{{({x^2}+b)}^2}}}$…(2分)
=$\frac{{a({x^2}+b)-ax•2x}}{{{{({x^2}+b)}^2}}}$=$\frac{{ab-a{x^2}}}{{{{({x^2}+b)}^2}}}$.…(4分)
(2)依题意有$\left\{\begin{array}{l}f'(1)=0\\ f(1)=2\end{array}\right.$…(6分)
所以$\left\{\begin{array}{l}\frac{ab-a}{{{{(a+b)}^2}}}=0\\ 1+b≠0\\ \frac{a}{1+b}=2\end{array}\right.$,解得a=4,b=1,…(9分)
所以$f(x)=\frac{4x}{{{x^2}+1}}$.…(10分)

点评 本题考查导数知识的运用,考查导数的几何意义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若$\frac{cos2α}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin(α+$\frac{π}{4}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合An={(x1,x2,…,xn)|xi∈{-1,1}(i=1,2,…,n)}.x,y∈An,x=(x1,x2,…,xn),y=(y1,y2,…,yn),其中xi,yi∈{-1,1}(i=1,2,…,n).定义x⊙y=x1y1+x2y2+…+xnyn.若x⊙y=0,则称x与y正交.
(Ⅰ)若x=(1,1,1,1),写出A4中与x正交的所有元素;
(Ⅱ)令B={x⊙y|x,y∈An}.若m∈B,证明:m+n为偶数;
(Ⅲ)若A⊆An,且A中任意两个元素均正交,分别求出n=8,14时,A中最多可以有多少个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在面积为1的等边三角形ABC内任取一点,使三角形△ABP,△ACP,△BCP的面积都小于$\frac{1}{2}$的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将函数y=f(x)的图象向左平移$\frac{π}{4}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙两人各进行3次射击,甲、乙每次击中目标的概率分别为$\frac{1}{2}$和$\frac{2}{3}$.
(1)求甲至多击中目标2次的概率;
(2)记乙击中目标的次数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义域是一切实数的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)实数一个“λ一半随函数”,有下列关于“λ一半随函数”的结论:①若f(x)为“1一半随函数”,则f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax为一个“λ一半随函数;③“$\frac{1}{2}$一半随函数”至少有一个零点;④f(x)=x2是一个“λ一班随函数”;其中正确的结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.集合U={1,2,3,4,5,6},A={1,3,5},B={2,4,5},则A∩∁UB=(  )
A.{1}B.{1,3}C.{1,3,6}D.{2,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC是边长为$2\sqrt{3}$的正三角形,EF为△ABC的外接圆o的一条直径,M为△ABC的边上的动点,则$\overrightarrow{ME}•\overrightarrow{MF}$的最小值为-3.

查看答案和解析>>

同步练习册答案