| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| Asin(ωx+φ) | 0 | 2 | -2 | 0 |
分析 (1)根据最值求得A,由周期求得ω,五点法做函数y=Asin(ωx+φ)的图象求得φ的值,可得函数的解析式.
(2)根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,得出结论.
解答 解:(1)补充表格:
由于最大值为2,最小值为-2,故A=2.
$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{π}{3}$=$\frac{π}{2}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{3}$+φ=$\frac{π}{2}$,∴φ=-$\frac{π}{6}$,故f(x)=2sin(2x-$\frac{π}{6}$).
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | $\frac{13π}{12}$ |
| Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\sqrt{2}$ | B. | $\sqrt{2}$-1 | C. | 5-$\sqrt{2}$ | D. | $\sqrt{2}$-5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com