精英家教网 > 高中数学 > 题目详情
若函数f(x)=cos22x-sin22x+sin4x(x∈R),则f(x)=(  )
分析:先利用二倍角公式和两角和公式对函数解析式化简整理进而利用正弦函数的性质求得函数的最小正周期和最大,最小值.
解答:解:f(x)=cos22x-sin22x+sin4x=
2
sin(4x+
π
4

∴函数的最小正周期为T=
4
=
π
2

最大值为
2
,最小值为-
2

故选C.
点评:本题主要考查了三角函数的周期性及其求法,三角函数的最值问题以及正弦函数的性质.考查了对三角函数基础知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

www.ks5u.co

已知函数

   (I)当a<0时,求函数的单调区间;

   (II)若函数f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

同步练习册答案