精英家教网 > 高中数学 > 题目详情
某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.

(1)分别求出按程序框图正确编程运行时输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.
甲的频数统计表(部分)
运行次数n
输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30
14
6
10




2 100
1 027
376
697
 
乙的频数统计表(部分)
运行次数n
输出y的值
为1的频数
输出y的值
为2的频数
输出y的值
为3的频数
30
12
11
7




2 100
1 051
696
353
 
当n=2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;
(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.
(1)     
(2)乙同学所编程序符合算法要求的可能性较大
(3)ξ的分布列为
ξ
0
1
2
3
P




 
所以E(ξ)=0×+1×+2×+3×=1
解:(1)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能.
当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故P1
当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故P2
当x从6,12,18,24这4个数中产生时,输出y的值为3,故P3
所以输出y的值为1的概率为,输出y的值为2的概率为,输出y的值为3的概率为
(2)当n=2 100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下:
 
输出y的值
为1的频率
输出y的值
为2的频率
输出y的值
为3的频率








 
比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大.
(3)随机变量ξ可能的取值为0,1,2,3.
P(ξ=0)=×
P(ξ=1)=×
P(ξ=2)=×
P(ξ=3)=×
故ξ的分布列为
ξ
0
1
2
3
P




 
所以E(ξ)=0×+1×+2×+3×=1.
即ξ的数学期望为1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

我国政府对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米)
空气质量等级

一级

二级

超标
 
某市环保局从180天的市区PM2.5监测数据中,随机抽取l0天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).

(1)求这10天数据的中位数.
(2)从这l0天的数据中任取3天的数据,记表示空气质量达到一级的天数,求的分布列;
(3)以这10天的PM2.5日均值来估计这180天的空气质量情况,其中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于分的次数为,求的分布列和数学期望..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某选修课的考试按A级、B级依次进行,只有当A级成绩合格时,才可继续参加B级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A级考试成绩合格的概率为,B级考试合格的概率为.假设各级考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得该选修课的合格证书的概率;
(2)在这个考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

体育课进行篮球投篮达标测试,规定:每位同学有5次投篮机会,若投中3次则“达标”;为节省测试时间,同时规定:①若投篮不到5次已达标,则停止投篮;②投篮过程中,若已有3次未中,则停止投篮.同学甲投篮命中率为
2
3
,且每次投篮互不影响.
(Ⅰ)求同学甲恰好投4次达标的概率;
(Ⅱ)设同学甲投篮次数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某游戏的得分为1,2,3,4,5,随机变量表示小白玩游戏的得分.若=4.2,则小白得5分的概率至少为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量的分布列为P()=,(k="1,2,3)," 其中c为常数,则E           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为防止山体滑坡,某地决定建设既美化又防护的绿化带,种植松树、柳树等植物.某人一次种植了n株柳树,各株柳树成活与否是相互独立的,成活率为p,设ξ为成活柳树的株数,数学期望E(ξ)=3,标准差σ(ξ)为.
(1)求n、p的值并写出ξ的分布列;
(2)若有3株或3株以上的柳树未成活,则需要补种,求需要补种柳树的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.

查看答案和解析>>

同步练习册答案