精英家教网 > 高中数学 > 题目详情
已知复数z满足z•(1-i)=3+i,i为虚数单位,则|z|=(  )
A、
5
B、
3
C、5
D、3
考点:复数求模
专题:数系的扩充和复数
分析:把等式两边同时乘以
1
1-i
,然后利用复数代数形式的除法运算化简,代入复数模的公式求模.
解答: 解:∵z•(1-i)=3+i,
z=
3+i
1-i
=
(3+i)(1+i)
(1-i)(1+i)
=
2+4i
2
=1+2i

∴|z|=
12+22
=
5

故选:A.
点评:本题考查复数代数形式的除法运算,考查了复数模的求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设复数z=sin(-
π
7
)+icos(-
π
7
),i为虚数单位,则复数z在复平面内所对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

2sin43°-
3
sin13°
cos13°
=(  )
A、-
3
B、
3
C、-1
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)在[a,b]上连续,将[a,b]n等分,在每个小区间上任取ξi,则
b
a
f(x)dx=(  )
A、
lim
n→∞
n
i=1
f(ξi
B、
lim
n→∞
n
i=1
f(ξi)•
b-a
n
C、
lim
n→∞
n
i=1
f(ξi)•ξi
D、
lim
n→∞
n
i=1
f(ξi)•(ξii-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

假设a1,a2,a3,a4是一个等差数列,且满足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).给出以下命题:
①数列{bn}是等比数列;
②b2>4;
③b4>32;
④b2b4=256.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线
x
a
+
y
b
=1(a>0,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则ab的取值范围是(  )
A、(-∞,
1
8
]
B、(0,
1
8
]
C、(0,8]
D、[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C1:y=
1
2
ex关于直线y=x对称得曲线C2,动点P在C1上,动点Q在C2上,则|PQ|最小值为(  )
A、1-ln2
B、
2
(1-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M的概率为P.则下列结论正确的是(  )
A、不论边长AB,BC如何变化,P为定值
B、若
AB
BC
的值越大,P越大
C、当且仅当AB=BC时,P最大
D、当且仅当AB=BC时,P最小

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
1
3
x3+3x+
2
3
,求与直线4x-y-2=0平行的该曲线的切线方程.

查看答案和解析>>

同步练习册答案