【题目】学校在军训过程中要进行打靶训练,给每位同学发了五发子弹,打靶规则:每个同学打靶过程中,若 连续两发命中或者 连续两发不中则要停止射击,否则将子弹打完.假设张同学在向目标射击时,每发子弹的命中率为 .
(1)求张同学前两发只命中一发的概率;
(2)求张同学在打靶过程中所耗用的子弹数X的分布列与期望.
【答案】
(1)解:记“第k发子弹命中目标”为事件Ak,则A1,A2,A3,A4,A5相互独立,
且 ,其中k=1,2,3,4,5
∴张同学前两发子弹只命中一发的概率为
(2)解:X的所有可能取值为2,3,4,5,
,
,
,
综上,X的分布列为
X | 2 | 3 | 4 | 5 |
P |
|
|
|
|
故E(X)= = .
【解析】(1)记“第k发子弹命中目标”为事件Ak,则A1,A2,A3,A4,A5相互独立,且 ,其中k=1,2,3,4,5,由此能求出张同学前两发子弹只命中一发的概率.(2)X的所有可能取值为2,3,4,5,分别求出相应的概率,由此能求出X的分布列和数学期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[﹣3,﹣2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义 为n个正数p1 , p2 , …,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为 ,又bn= ,则 + + +…+ =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 (a∈R).
(1)求f(x)的单调区间;
(2)曲线y=xf(x) 是否存在经过原点的切线,若存在,求出该切线方程,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com