精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[﹣3,﹣2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

【答案】B
【解析】解:由f(x+2)=f(x)得,函数f(x)的周期为2,

因为f(x)在[﹣3,﹣2]上为减函数,所以f(x)在[﹣1,0]上为减函数,

因为f(x)为偶函数,所以f(x)在[0,1]上为单调增函数.

因为在锐角三角形中,π﹣A﹣B<

所以A+B> ,即 ﹣B<A,

因为α,β是锐角,所以0< ﹣B<A<

所以sinA>sin( ﹣B)=cosB,

因为f(x)在[0,1]上为单调增函数.

所以f(sinA)>f(cosB),

所以答案是:B.

【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x2+(2﹣m)x﹣m,g(x)=x2﹣x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求关于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]时f(x)的值域;
(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,SABC= ,c=2,f(C+ )= .求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα=﹣ ,tan(α+β)=﹣3,π<α< ,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 经过点 ,求:
(1)曲线在点 处的切线的方程;
(2)过点 的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,焦距为
(1)求椭圆 的方程;
(2)已知椭圆 与直线 相交于不同的两点 ,且线段 的中点不在圆 内,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校在军训过程中要进行打靶训练,给每位同学发了五发子弹,打靶规则:每个同学打靶过程中,若 连续两发命中或者 连续两发不中则要停止射击,否则将子弹打完.假设张同学在向目标射击时,每发子弹的命中率为
(1)求张同学前两发只命中一发的概率;
(2)求张同学在打靶过程中所耗用的子弹数X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x2的图象在点(x0 , x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足(
A.x0∈(
B.x0∈(1,
C.x0∈(0,
D.x0∈( ,1)

查看答案和解析>>

同步练习册答案