精英家教网 > 高中数学 > 题目详情

【题目】已知曲线 经过点 ,求:
(1)曲线在点 处的切线的方程;
(2)过点 的曲线C的切线方程.

【答案】
(1)解:将 代入中 得t=1,∴ .

∴曲线在点 处切线的斜率为

∴曲线在点 处的切线方程为 即x-y-3=0


(2)解:点 不在曲线 上,设过点 的曲线 的切线与曲线 相切于点 ,则切线斜率

由于 ,∴ ,∴切点为 ,切线斜率 ,切线方程为

,即y=4x


【解析】(1)由已知条件结合导数的性质求出点P处的切线的斜率,利用点斜式求出直线的方程即可。(2)设出切点的坐标M计算出切线的斜率结合点M在曲线上即可得到x0的值,进而可得到点M的坐标然后求出切线的斜率由直线的点斜式求出直线的方程即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知0<a<1,函数f(x)=logax.
(1)若f(5a﹣1)≥f(2a),求实数a的最大值;
(2)当a= 时,设g(x)=f(x)﹣3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(x,1), =(4,﹣2).
(Ⅰ)当 时,求| + |;
(Ⅱ)若 所成角为钝角,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[﹣3,﹣2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 上一点且纵坐标为 上的两个动点,且

(1)求过点 ,且与 恰有一个公共点的直线 的方程;
(2)求证: 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义 为n个正数p1 , p2 , …,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为 ,又bn= ,则 + + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (a∈R).
(1)求f(x)的单调区间;
(2)曲线y=xf(x) 是否存在经过原点的切线,若存在,求出该切线方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,已知直线 的斜率为 .
(1)若直线 过点 ,求直线 的方程;
(2)若直线 轴、 轴上的截距之和为 ,求直线 的方程.

查看答案和解析>>

同步练习册答案