精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系 中,已知直线 的斜率为 .
(1)若直线 过点 ,求直线 的方程;
(2)若直线 轴、 轴上的截距之和为 ,求直线 的方程.

【答案】
(1)解:因为直线 的斜率为 ,所以直线 的方程为 ,即 .
(2)解:因为直线 的斜率为 ,所以可设直线 的方程为y=2x+b.令x=0,得y=b.令y=0,得x= .由题知 ,解得b=6.
所以直线 的方程为y=2x+6,即2x-y+6=0
【解析】(1)直接由点斜式写出直线的方程;
(2)设出直线的方程,求出两截距,由条件求出b,得到直线的方程。
【考点精析】通过灵活运用点斜式方程和斜截式方程,掌握直线的点斜式方程:直线经过点,且斜率为则:;直线的斜截式方程:已知直线的斜率为,且与轴的交点为则:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线 经过点 ,求:
(1)曲线在点 处的切线的方程;
(2)过点 的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线y=1+ 与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲和乙参加有奖竞猜闯关活动,活动规则:①闯关过程中,若闯关成功则继续答题;若没通关则被淘汰;②每人最多闯3关;③闯第一关得10万奖金,闯第二关得20万奖金,闯第三关得30万奖金,一关都没过则没有奖金.已知甲每次闯关成功的概率为 ,乙每次闯关成功的概率为
(1)设乙的奖金为ξ,求ξ的分布列和数学期望;
(2)求甲恰好比乙多30万元奖金的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x2的图象在点(x0 , x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足(
A.x0∈(
B.x0∈(1,
C.x0∈(0,
D.x0∈( ,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x﹣1)=f(3﹣x)且方程f(x)=2x有两个相等实数根 (Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出符合条件的所有m,n的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x﹣cos2x+1,下列结论中错误的是(
A.f(x)的图象关于( ,1)中心对称
B.f(x)在( )上单调递减
C.f(x)的图象关于x= 对称
D.f(x)的最大值为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x的定义域为R,满足f(a+2)=18,函数g(x)=λ3ax﹣4x的定义域为[0,1].
(1)求实数a的值;
(2)若函数g(x)为定义域上单调减函数,求实数λ的取值范围;
(3)λ为何值时,函数g(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的2×2列联表:

及格

不及格

合计

很少使用手机

20

6

26

经常使用手机

10

14

24

合计

30

20

50


(1)判断是否有97.5%的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,则此二人适合结为学习上互帮互助的“学习师徒”,记X为两人中解出此题的人数,若X的数学期望E(X)=1.4,问两人是否适合结为“学习师徒”? 参考公式及数据: ,其中n=a+b+c+d.

P(K2≥K0

0.10

0.05

0.025

0.010

K0

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案