精英家教网 > 高中数学 > 题目详情

【题目】已知 =(x,1), =(4,﹣2).
(Ⅰ)当 时,求| + |;
(Ⅱ)若 所成角为钝角,求x的范围.

【答案】解:(Ⅰ)当 时,有﹣2x﹣4=0,解得:x=﹣2,

+ =(2,﹣1),所以| + |=

(Ⅱ)由 =4x﹣2,且 所成角为钝角,则满足4x﹣2<0且 不反向,由第(Ⅰ)问知,当x=﹣2时, 反向,

故x的范围为(﹣∞,﹣2)∪(﹣2, ).


【解析】(Ⅰ)根据向量共线的坐标公式可得x=﹣2,即得 + =(2,﹣1)再根据向量的模求得结果。
(Ⅱ)根据向量的数量积运算公式; =4x﹣2, 所成角为钝角,即得4x﹣2<0.由已知可得,当x=﹣2时, 反向,即得x的取值范围。
【考点精析】根据题目的已知条件,利用向量的几何表示的相关知识可以得到问题的答案,需要掌握带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}(n∈N*)是首项为20的等差数列,其公差d≠0,且a1 , a4 , a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn , 当Sn>0时,求n的最大值;
(Ⅲ)设bn=5﹣ ,求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点, =(2cosx, ), =(sinx+ cosx,﹣1),若f(x)= +2.
(1)求函数f(x)的对称轴方程;
(2)当 时,若函数g(x)=f(x)+m有零点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=-x3-2x2+4x,当x∈[-3,3]时,f(x)≥a有恒成立,则实数a的取值范围是( )
A.(-3,11)
B.[-33,+∞)
C.(-∞,-33]
D.[2,7]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,游乐场中的摩天轮匀速逆时针旋转,每转一圈需要6min,其中心O距离地面40.5m,摩天轮的半径为40m,已知摩天轮上点P的起始位置在最低点处,在时刻t(min)时点P距离地面的高度为f(t)=Asin(ωt+φ)+h(A>0,ω>0,﹣π<φ<0,t≥0).
(Ⅰ)求f(t)的单调减区间;
(Ⅱ)求证:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 经过点 ,求:
(1)曲线在点 处的切线的方程;
(2)过点 的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”: 2 = ,3 = ,4 = ,5 =
则按照以上规律,若8 = 具有“穿墙术”,则n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲和乙参加有奖竞猜闯关活动,活动规则:①闯关过程中,若闯关成功则继续答题;若没通关则被淘汰;②每人最多闯3关;③闯第一关得10万奖金,闯第二关得20万奖金,闯第三关得30万奖金,一关都没过则没有奖金.已知甲每次闯关成功的概率为 ,乙每次闯关成功的概率为
(1)设乙的奖金为ξ,求ξ的分布列和数学期望;
(2)求甲恰好比乙多30万元奖金的概率.

查看答案和解析>>

同步练习册答案