精英家教网 > 高中数学 > 题目详情

【题目】已知O为坐标原点, =(2cosx, ), =(sinx+ cosx,﹣1),若f(x)= +2.
(1)求函数f(x)的对称轴方程;
(2)当 时,若函数g(x)=f(x)+m有零点,求m的范围.

【答案】
(1)解:∵

∴f(x)= +2=2cosxsinx+2 cos2x﹣ +2=sin2x+ cos2x+2=2sin(2x+ )+2

∴对称轴方程为2x+ = +kπ,k∈Z,

即x= + ,k∈Z,


(2)解:∵当 时,函数g(x)=f(x)+m有零点,

∴﹣m=f(x)

∴2x+ ∈( ),

∴﹣ <sin(2x+ )≤1,

∴f(x)∈(﹣ +2,4],

∴m∈[﹣4, ﹣2)


【解析】1、由题意可得根据向量的数量积公式和二倍角公式化简f(x)再根据对称轴方程的定义即可求得。
2、当 x ∈ ( 0 , )时,若函数g(x)=f(x)+m有零点转化为-m=f(x)求出f(x)的值域即可。
【考点精析】认真审题,首先需要了解正弦函数的对称性(正弦函数的对称性:对称中心;对称轴).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<a<1,函数f(x)=logax.
(1)若f(5a﹣1)≥f(2a),求实数a的最大值;
(2)当a= 时,设g(x)=f(x)﹣3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足3a8=5a15 , 且 ,Sn为其前n项和,则数列{Sn}的最大项为(
A.
B.S24
C.S25
D.S26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈(0, ),β∈(0, ),且满足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(x,1), =(4,﹣2).
(Ⅰ)当 时,求| + |;
(Ⅱ)若 所成角为钝角,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 (a∈R).
(1)求f(x)的单调区间;
(2)曲线y=xf(x) 是否存在经过原点的切线,若存在,求出该切线方程,若不存在说明理由.

查看答案和解析>>

同步练习册答案