精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=-x3-2x2+4x,当x∈[-3,3]时,f(x)≥a有恒成立,则实数a的取值范围是( )
A.(-3,11)
B.[-33,+∞)
C.(-∞,-33]
D.[2,7]

【答案】C
【解析】令f(x)=-3x2-4x+4,令f(x)=0,可得x=-2或 .,f(-3)=-3,f(-2)=-8,f( )= ,f(3)=-33,要使f(x)≥a在x∈[-3,3]上恒成立,只需fmin(x)≥a,所以的取值范围是(-∞,-33],故C符合题意.

所以答案是:C .
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校对高一年级学生的数学成绩进行统计,全年级同学的成绩全部介于60分与100分之间,将他们的成绩数据绘制如图所示的频率分布直方图.现从全体学生中,采用分层抽样的方法抽取80名同学的试卷进行分析,则从成绩在[80,100]内的学生中抽取的人数为( )

A.56
B.32
C.24
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M: + =1(a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B,经过点F的直线l与椭圆M交于C,D两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈(0, ),β∈(0, ),且满足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为得到函数y=sin2x﹣cos2x的图象,可由函数y= sin2x的图象( )
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(x,1), =(4,﹣2).
(Ⅰ)当 时,求| + |;
(Ⅱ)若 所成角为钝角,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 上一点且纵坐标为 上的两个动点,且

(1)求过点 ,且与 恰有一个公共点的直线 的方程;
(2)求证: 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.

查看答案和解析>>

同步练习册答案