精英家教网 > 高中数学 > 题目详情

【题目】已知sinα=﹣ ,tan(α+β)=﹣3,π<α< ,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

【答案】解:(Ⅰ)因为π<α< ,∴cosα=﹣ =﹣ ,∴tanα= =

∴tanβ=tan[(α+β)﹣α]= = =7.

(Ⅱ)因为tan(α+β)=﹣3,tanα= ,所以tan(2α+β)=tan[(α+β)+α]= = =﹣1.

由(Ⅰ)知tanβ>1,所以 <β<

又因为π<α< ,所以2π+ <2α+β< ,所以2α+β=2π+ =


【解析】(Ⅰ)根据同角三角函数的基本公式可求得tanα=,再由拼凑法可得tanβ=tan[(α+β)﹣α]=7.
(Ⅱ)由已知拼凑可得 tan(2α+β)=tan[(α+β)+α] 根据两角和差的正切值可求得结果。
【考点精析】解答此题的关键在于理解两角和与差的正切公式的相关知识,掌握两角和与差的正切公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,且an+1=2an+1(n∈N*
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn
(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+ ﹣1>(﹣1)na恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数f(3x﹣2)的定义域为( )
A.[ ]
B.[﹣1, ]
C.[﹣3,1]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x﹣cos2x,有下列四个结论:①f(x)的最小正周期为π;②f(x)在区间[﹣ ]上是增函数;③f(x)的图象关于点( ,0)对称;④x= 是f(x)的一条对称轴.其中正确结论的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(2+x)=f(x),且在[﹣3,﹣2]上是减函数,若A、B是锐角三角形ABC的两个内角,则下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 上的点 到焦点 的距离为

(1)求 的值;
(2)设 是抛物线上分别位于 轴两侧的两个动点,且 (其中 为坐标原点).求证:直线 过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ex+ax2 无极值点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用符号“∈”或“”填空:
(1)若集合P由小于 的实数构成,则2 P;
(2)若集合Q由可表示为n2+1( )的实数构成,则5 Q.

查看答案和解析>>

同步练习册答案