精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 上的点 到焦点 的距离为

(1)求 的值;
(2)设 是抛物线上分别位于 轴两侧的两个动点,且 (其中 为坐标原点).求证:直线 过定点,并求出该定点的坐标.

【答案】
(1)解:由抛物线的定义得, ,解得

所以抛物线的方程为 ,代入点 ,可解得


(2)解:设直线 的方程为

联立 消元得 ,则

,得 ,所以 (舍去),

,即 ,所以直线 的方程为

所以直线 过定点


【解析】(1)由题意结合抛物线上的点几何意义可求出P的值,因为点T在抛物线上故把点的坐标满足方程代入求解出t的值即可。(2)首先设出两点的坐标联立直线和抛物线方程消元得到关于x的方程,再借助韦达定理求出两根之和与两根之积的代数式,根据向量的数量积坐标公式解出 y 1y2 的值进而求出n的值故得出直线过定点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解答题
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)设a2﹣2ab+5b2=4对a,b∈R成立,求a+b的最大值及相应的a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2 , |AB|=4,|F1F2|=2 ,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.

(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2 , 求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα=﹣ ,tan(α+β)=﹣3,π<α< ,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= cos(2x+ )﹣1的图象向左平移 个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则函数g(x)具有性质 . (填入所有正确性质的序号)
①最大值为 ,图象关于直线x=﹣ 对称;
②图象关于y轴对称;
③最小正周期为π;
④图象关于点( ,0)对称;
⑤在(0, )上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,焦距为
(1)求椭圆 的方程;
(2)已知椭圆 与直线 相交于不同的两点 ,且线段 的中点不在圆 内,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)是否存在常数λ,使得{an+λ}为等比数列?若存在,求出λ的值和通项公式an , 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)当 时,求 的最小值;
(2)若对 ,都有 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有9个形状大小相同但颜色不同的小球,其中红色、蓝色、黄色球各3个,现从中随机地连取3次球,每次取1个,记事件A为“3个球都是红球”,事件B为“3 个球颜色不全相同” (Ⅰ)若每次取后不放回,分别求出事件A和事件B的概率(用数字作答);
(Ⅱ)若每次取后放回,分别求出事件A和事件B的概率(用数字作答).

查看答案和解析>>

同步练习册答案