精英家教网 > 高中数学 > 题目详情

【题目】已知数列an的首项a1=2,且an=2an1﹣1(nN+ , n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan﹣n}的前n项和Sn

【答案】
(1)解:∵an=2an1﹣1,

∴an﹣1=2(an1﹣1),

即{an﹣1}是以a1﹣1=2﹣1=1,为首项,公比q=2的等比数列,

∴an﹣1=2n1,即an=1+2n1


(2)解:∵an=1+2n1.,

∴nan﹣n=n(1+2n1)﹣n=n2n1

数列{nan﹣n}的前n项和Sn=120+221+322+…+n2n1,①

2Sn=121+222+323+…+(n﹣1)2n1+n2n,②,

①﹣②得,﹣Sn=120+21+22+…+2n1﹣n2n= ﹣n2n=2n﹣n2n﹣1=(1﹣n)2n﹣1,

即Sn=(n﹣1)2n+1


【解析】(1)根据条件构造一个等比数列,即可求数列{an}的通项公式;(2)求出数列{nan﹣n}的通项公式,利用错位相减法即可求出前n项和Sn
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinθ,﹣2)与 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a3=5,a10=﹣9.
(1)求数列{an}的通项公式;
(2)求Sn的最大值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N点P满足

(1) 求点P的轨迹方程;

(2)设点 在直线x=-3上,且.证明过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有质地、大小完全相同的5个小球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏.甲先摸出一个球.记下编号,放回后再摸出一个球,记下编号,如果两个编号之和为偶数.则算甲赢,否则算乙赢.
(1)求甲赢且编号之和为6的事件发生的概率:
(2)试问:这种游戏规则公平吗.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的偶函数f(x)满足对于任意实数x,都有f(1+x)=f(1﹣x),且当0≤x≤1时,f(x)=3x+1
(1)求证:函数f(x)是周期函数;
(2)当x∈[1,3]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为( )
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简求值:
(1)(1+tan2θ)cos2θ
(2)已知 ,求2+sinθcosθ﹣cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关系式中正确的是(
A.sin 11°<cos 10°<sin 168°
B.sin 168°<sin 11°<cos 10°
C.sin 11°<sin 168°<cos 10°
D.sin 168°<cos 10°<sin 11°

查看答案和解析>>

同步练习册答案