精英家教网 > 高中数学 > 题目详情
求数列
1
1+
2
1
2
+
3
,…,
1
n
+
n+1
,…
的前n项和
 
分析:数列的通项
1
n
+
n+1
=
n+1
-
n
进而通过化简求得前n项和.
解答:解:
1
1+
2
+
1
2
+
3
+,…,+
1
n
+
n+1
=
2
-1
+
3
-
2
+…+
n+1
-
n
=
n+1
-1

故答案为:
n+1
-1
点评:本题主要考查了数列的求和问题.利用了拆项求和的办法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

裂项相消法:求数列
1
1+
2
1
2
+
3
,…,
1
n
+
n+1
,…的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

求数列
1
1×3
1
2×4
1
3×5
,…,
1
n(n+2)
,…的前n项和S.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

裂项相消法:求数列
1
1+
2
1
2
+
3
,…,
1
n
+
n+1
,…的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

求数列
1
1+
2
1
2
+
3
,…,
1
n
+
n+1
,…
的前n项和______.

查看答案和解析>>

同步练习册答案