精英家教网 > 高中数学 > 题目详情

【题目】如图,已知点为抛物线的焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心轴上,直线轴于点,且在点的右侧.的面积分别.

1)求的值及抛物线的方程;

2)求的最小值及此时点的坐标.

【答案】1;(2

【解析】

1)由抛物线的焦点坐标,即可得的值及抛物线的方程;

2)引入变量表示点坐标,然后将直线的方程用表示,利用三角形的重心也可以把其余点的坐标用变量表示,进而将三角形面积的比值表示成关于的函数,再利用基本不等式求最小值,从而得到答案.

1)由抛物线的性质可得:,∴

∴抛物线的方程为

2)设,重心

,则

由于直线,故直线的方程为

代入,得:

,即,∴

,重心在轴上,

∴直线的方程为,得

在焦点的右侧,∴

,则

∴当时,取得最小值为,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从抛物线上任意一点Px轴作垂线段,垂足为Q,点M是线段上的一点,且满足

(1)求点M的轨迹C的方程;

(2)设直线与轨迹c交于两点,TC上异于的任意一点,直线分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆是长轴的一个端点,弦过椭圆的中心O,点C在第一象限,且.

1)求椭圆的标准方程;

2)设PQ为椭圆上不重合的两点且异于AB,若的平分线总是垂直于x轴,问是否存在实数,使得?若不存在,请说明理由;若存在,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,把函数的图象向右平移个单位,再把图象上各点的横坐标缩小到原来的一半,纵坐标不变,得到函数的图象,当时,方程恰有两个不同的实根,则实数的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

60

已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.

1)请将上面的列联表补充完整;

2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面.

(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;

(2)当直线与平面所成的角为45°时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

同步练习册答案