【题目】已知四棱锥
中,
底面
,
,
,
,
.
![]()
(1)当
变化时,点
到平面
的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线
与平面
所成的角为45°时,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】如图,已知点
为抛物线
的焦点,过点
的直线交抛物线于
、
两点,点
在抛物线上,使得
的重心
在
轴上,直线
交
轴于点
,且
在点
的右侧.记
、
的面积分别
、
.
![]()
(1)求
的值及抛物线的方程;
(2)求
的最小值及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
是参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
交于
,
两点,与曲线
交于
,
两点,求
取最大值时
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比
.
(1)设圆
求过
(2,0)的直线关于圆
的距离比
的直线方程;
(2)若圆
与
轴相切于点
(0,3)且直线
=
关于圆
的距离比
,求此圆的
的方程;
(3)是否存在点
,使过
的任意两条互相垂直的直线分别关于相应两圆
的距离比始终相等?若存在,求出相应的点
点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
平面
,
,
.
,
,
,
是
的中点.
![]()
(Ⅰ)证明:
⊥平面
;
(Ⅱ)若二面角
的余弦值是
,求
的值;
(Ⅲ)若
,在线段
上是否存在一点
,使得
⊥
. 若存在,确定
点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15,
N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:
,其中
.
(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.
(2)若平均每趟地铁每分钟的净收益为
(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com