精英家教网 > 高中数学 > 题目详情
某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费费用共1.5万元,汽车的维修费
用为:第一年0.4万元,第二年0.6万元,第三年0.8万元,依等差数列逐年递增.
(1)设该车使用n年的总费用(包括购车费用)为试写出的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
(1) ,(2)13.

试题分析:(1) 解实际问题应用题,关键在于根据题意列出等量关系. 由等差数列求和得:(2)由题意得为求年平均费用最小值:当且仅当时,取“=”.
解:(1)               (4分)

              (7分)
(2) ,         (11分)
当且仅当时,取“=”.               (13分)
所以,这种汽车使用13年报废最合算.                   (15分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

数列的首项,
求数列的通项公式;
的前项和为,若的最小值为,求的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和
(1)求数列的通项公式;
(2)求的最大或最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为公差不为零的等差数列,首项的部分项、…、恰为等比数列,且
(1)求数列的通项公式(用表示);
(2)若数列的前项和为,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列的首项为1,其余各项为1或2,且在第个1和第个1之间有个2,即数列为:1,2,1,2,2,2,1,2,2,2,2,2,1,…,记数列的前项和为,则 __  ___ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为
(1)求的值及的表达式;
(2)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列是等差数列,,前四项和
(1)求数列的通项公式;
(2)记,计算

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·天津市模拟]若等差数列{an}的前5项和S5=25,且a2=3,则a7=(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知数列,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案