精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AB=AA1=2
2
,点D是AB的中点,点E是BB1的中点.
(1)求证:A1B⊥平面CDE;
(2)求二面角D-CE-A1的大小.
分析:(1)欲证A1B⊥平面CDE,只需证明A1B垂直平面CDE内两条相交直线即可,而A1B⊥DE,CD⊥A1B,CD∩DE=D,CD,DE?面CDE,满足线面垂直的判定定理,结论得证;
(2)由题意,∠ACB=90°,以C 为坐标原点,CA,CB,CC1,分别为x,y,z轴,建立空间直角坐标系,用坐标表示向量,进而可求平面的法向量,从而利用数量积公式可求.
解答:证明:(1)∵AA1⊥底面ABC,CD?面ABC
∴AA1⊥CD
∵AC=BC,点D是AB的中点
∴AB⊥CD
∵AA1∩AB=A,AA1,AB?面A1ABB1∴CD⊥面A1ABB1
∵A1B?面A1ABB1
∴CD⊥A1B
∵正方形A1ABB1中,DE∥AB1,A1B⊥AB1
∴A1B⊥DE
∵CD∩DE=D,CD,DE?面CDE
∴A1B⊥面CDE
(2)由题意,∠ACB=90°
以C 为坐标原点,CA,CB,CC1,分别为x,y,z轴,建立空间直角坐标系,则
C(0.0,0),A1(2,0,2
2
),E(0,2,
2
),D(1,1,0)
CE
=(0,2,
2
),
CA1
=(2,0,2
2
),
CD
=(1,1,0)

∴平面的法向量分别为(2,1,-
2
),(2,-2,-
2
),
cosα=
4
2
15
=
2
15
15

∴二面角D-CE-A1的大小 arccos
2
15
15
点评:本题以直三棱柱为载体,考查线面垂直的判定定理,考查面面角,同时考查了计算能力和论证推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案