精英家教网 > 高中数学 > 题目详情
如图,正方体中,,点的中点,点上,若平面,则________.

试题分析:根据题意可知,由于正方体中,,点的中点,点上,那么结合平面,则可知根据线面平行的性质可知,EF//AC,则可致电F为CD的中点,因此根据正方体棱长为2,则AC=2,,故答案为
点评:解决该试题的管家式将EF转化为AC的长度的比例关系来求解,属于基础题,分析问题和解决问题的能力。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。

(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥中, 两两垂直, 且.设是底面内一点,定义,其中分别是三棱锥M-PAB、 三棱锥M-PBC、三棱锥M-PCA的体积.若,且恒成立,则正实数的最小值为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的直三棱柱中,,点的中点.

(1)求证:∥平面
(2)求异面直线所成的角的余弦值;
(3)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题15分)如图,在四棱锥中,底面 , ,的中点。

(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中命题正确的是              .(填序号)

查看答案和解析>>

同步练习册答案