分析 (1)利用同角三角函数的基本关系,求得要求式子的值.
(2)由条件利用两角和差的余弦公式求得cosαcosβ=$\frac{2}{5}$,sinαsinβ=$\frac{1}{5}$,可得 tanα•tanβ=$\frac{sinα•sinβ}{cosα•cosβ}$ 的值.
解答 解:(1)∵已知tanα=3,∴$\frac{3sinα+cosα}{sinα-2cosα}$=$\frac{3tanα+1}{tanα-2}$=$\frac{9+1}{3-2}$=10.
(2)若cos(α+β)=cosαcosβ-sinαsinβ=$\frac{1}{5}$,cos(α-β)=cosαcosβ+sinαsinβ=$\frac{3}{5}$,
∴cosαcosβ=$\frac{2}{5}$,sinαsinβ=$\frac{1}{5}$,
∴tanα•tanβ=$\frac{sinα•sinβ}{cosα•cosβ}$=$\frac{1}{2}$.
点评 本题主要考查同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x3 | B. | y=x | C. | y=x-3 | D. | y=x-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2] | B. | [-2,-1] | C. | [-1,0) | D. | (-∞,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com