【题目】设函数f(x)=
,a∈R,若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则实数a的取值范围为 .
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知点
,
,
在圆上.
(1)求圆
的方程;
(2)过点
的直线
交圆
于
,
两点.
①若弦长
,求直线
的方程;
②分别过点
,
作圆
的切线,交于点
,判断点
在何种图形上运动,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=
.![]()
(Ⅰ)证明:AC⊥平面BCDE;
(Ⅱ)求直线AE与平面ABC所成的角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四棱锥E﹣ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC.![]()
(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的函数
为
上的偶函数,且在区间
上的最大值为10. 设
.
⑴ 求函数
的解析式;
⑵ 若不等式
在
上恒成立,求实数
的取值范围;
⑶ 是否存在实数
,使得关于
的方程
有四个不相等的实 数根?如果存在,求出实数
的范围,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体
的棱长为1,线段
上有两个动点
,且
,则下列结论中正确的是__________.
![]()
①
平面
;
②平面
平面
;
③三棱锥
的体积为定值;
④存在某个位置使得异面直线
与
成角
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆O:x2+y2=4与x轴的正半轴交于点A,以A为圆心的圆A:(x﹣2)2+y2=r2(r>0)与圆O交于B,C两点.![]()
(1)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当线段DE长最小时,求直线l的方程;
(2)设P是圆O上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,问OMON是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com