精英家教网 > 高中数学 > 题目详情
直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)若D是AB中点,求证:AC1平面B1CD;
(Ⅲ)当
BD
AB
=
1
3
时,求二面角B-CD-B1的余弦值.
证明:(Ⅰ)在△ABC中,因为AB=5,AC=4,BC=3,
所以AC2+BC2=AB2,所以AC⊥BC.
因为直三棱柱ABC-A1B1C1,所以CC1⊥AC.
因为BC∩AC=C,
所以AC⊥平面BB1C1C.
所以AC⊥B1C.
(Ⅱ)证明:连接BC1,交B1C于E,DE.
因为直三棱柱ABC-A1B1C1,D是AB中点,
所以侧面BB1C1C为矩形,DE为△ABC1的中位线,
所以DEAC1
因为DE?平面B1CD,AC1?平面B1CD,
所以AC1平面B1CD.
(Ⅲ)由(Ⅰ)知AC⊥BC,
所以如图,以C为原点建立空间直角坐标系C-xyz.
则B(3,0,0),A(0,4,0),A1(0,0,c),B1(3,0,4).
设D(a,b,0)(a>0,b>0),
因为点D在线段AB上,且
BD
AB
=
1
3
,即
BD
=
1
3
BA

所以a=2,b=
4
3
BD
=(-1,
4
3
,0)

所以
B1C
=(3,0,4)
BA
=(-3,4,0)
CD
=(2,
4
3
,0)

平面BCD的法向量为
n1
=(0,0,1)

设平面B1CD的法向量为
n2
=(x,y,1)

B1C
n2
=0
CD
n2
=0
,得
3x+4=0
2x+
4
3
y=0

所以x=-
4
3
,y=2,
n2
=(-
4
3
,2,1)

设二面角B-CD-B1的大小为θ,
所以cosθ=
n1
n2
|
n1
||
n2
|
=
3
61

所以二面角B-CD-B1的余弦值为
3
61
61


练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设S为平面外的一点,SA=SB=SC,,若,求证:平面ASC平面ABC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4
,A为PD的中点,如图.将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,且
SE
=
1
3
SD
,如图.
(Ⅰ)求证:SA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,侧面AA1CC1⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC的中点,E为BC1的中点
(1)求证:OE平面A1AB;
(2)求二面角A-A1B-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:BD⊥PC;
(2)求三棱锥A-PCD的体积;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形ABCD中,BC=2,AB=1,PA丄平面ABCD,BEPA,BE=
1
2
PA
,F为PA的中点.
(I)求证:DF平面PEC
(II)若PE=
2
,求平面PEC与平面PAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α的一个法向量为
n
=(1,-
3
,0)
,则y轴与平面α所成的角的大小为(  )
A.
π
6
B.
π
3
C.
π
4
D.
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1平面A1DE;
(2)求证:D1E⊥A1D;
(3)在线段AB上是否存在点E,使二面角D1-EC-D的大小为
π
6
?若存在,求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EFAB,∠BAF=90°,AD=2,AB=AF=2EF=1,点P在棱DF上.
(Ⅰ)若P是DF的中点,
(ⅰ)求证:BF平面ACP;
(ⅱ)求异面直线BE与CP所成角的余弦值;
(Ⅱ)若二面角D-AP-C的余弦值为
6
3
,求PF的长度.

查看答案和解析>>

同步练习册答案